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GENERAL INTRODUCTION

. Zircbnium compounds were first discovered by Klaproth in 1789,
while the metal itéglf was not isolated untilv1824 by Berzelius.
Zirconium, like many other transition metals, was first purified via tﬁe
van Arkel-DeBoer process. Crude metal was transported from a ~350°C
- region to a filament of the particular metal resistively heated to
W1506°C by an iodide vapor phase transport reaction. The vapor phase
spe;ies in the case of zirconium is ZrI4.

Zirconium was first emﬁloyed in industfy because of .its strength,
duqtility, ease of fabrication and its resistance to acid and/or water
corrosion. ‘However, upon the birth of the nuclear age it. was found to
_ havé one addi#ional important property: a Very low thermal neutron
cross section;(0.18 barns/atom). This combined with its high temperature
.stability aﬁd resistanée to corrosion in hot water made it an'excellent
: chbice for céntainment-of UO2 fuel in water cooled reactors. The major
problem then'is that hafnium, which naturally occurs with zirconium, has
a high (113'bérns/atom) thermal neutron cross section, making the sepa-
ration of these eleménts critical. Zirconium and hafnium are found
”-ﬁogether papu:al;y-in.the ore zircon where Hafnium is usually 2-3% qf
the zirconiup.content. Both metals have very s;milar’physical and
chemical profergies Vhich mékes their separation difficult. Therefore,
reactor grade zirconium (<100 ppm Hf) is produced yia éklong wet chemis-
try scheme (1). However, wheﬁ zirconium is produced for commercial

'applications other than use in reactors, the relatively small hafnium



content is generally of no concern. In such cases the metal is obtained
from the reductioﬁ of the tetrachloride with Mg to yield MgCl2 and metal
(ﬁhe Kroll process).

The use qf'zirconium in nuclear reactors, usually in the form of
Zircaloy-Z containing ~1.57 tin, has spurred research in the area of
zirconium compounds. A lot of emphasis has been placed upon the binary
Zr-ZrI4 and ternary CsI—Zt-ZrI4 systems because of the phenomenon of
stress—corrosion-cracking (SCC). Many researchers in the field (2-4)
believe SCC of Zircaloy-2 tubing is caﬁsed by iodine and/or cesium, both
of which are fission products of U02. SCC of Zircaloy-2 occurs when
fuél rods are exposed to a stress and reactor power increases after a
sgfficiently:large fuel burn up. Therefore, in addition to the develop-
ment of general information on transition metal halide chemistry it was
hoped that this investigation into the binary Zr--ZrI4 and ternary CsI-
Zr-ZrI4 systems might shed new light upon‘éompounds perhaps important in
8CC of Zircaloy-2.

When this work was initiated two binary iodides were well-known,
2rI, and ZrI,. The first is an orange-red paterial obtained at ~350°C
from ;he reaction of 12 with Zr. Though its sfructure is similar to
those of a-NbI4 (5), ZrC14‘(6) and B-ReCl4 (7), it 1is unique in that the
infinite chains_of ZrI6 octahgdra share nonopposite edges ﬁo_form a
heiical arfangement with a period of six octahedra along the chain (8).

Zirconium triiodide has been found to be nonstoichiometric over the
range (775°C) 2.83(5) < I:Zr < 3.43(5) (475°C) (9). In the ideal stoi-

chiometry one-~third of the octahedral holes are filled between h.c.p.



iodine layers to fqrm linear chains of ZrI6 octahedra which share
.opposite faces. The zirconium atoms therefore form linear chains
parallel to the ¢ axis. The synthesis of "ZrIz" had also been reported
by ‘Sale and Shelton (10) from the disproportionation of ZrI3 under a
360/390°C gradient in a sealed Pyrex tube.  However, the powder pattern
reported was found to agree well with that of the lower limit friiodide
cand ZrI

ZrI2 é 9. ‘In addition to the known compounds ZrI , Daake (11)

4 3

prepared a phase assigned the composition "2rI '. This was obtained

'
1.8
from the reaction of ZrI3 or'ZrI4 with a large excess of zirconium at

‘ ¢750°C for two weeks. The black platelet phase had a unique powder
pattefn; the composition was obtained from wet chemical analysis. In

thg presént work the known binary zirconium iodides have been expanded

to include two polymofphs of ZrI2 (cyB) . Ip addition, a discussion of

tﬁe "ZrIl.B" phase will be presented.

Other published work in the Zr—ZrI4 system agrees at least in part
wifh that reported here and earlier by Daake and Corbett (9). Cubicciotti
and coworkers report thermodynamic‘evidence.fof a nonstoichiometric tri-
iodide from 5{4—2.8 as well as a diiodide from 2.0-1.9 (v420°C) (12).

In addition, ofher more reduced phases such as ZrIl.7, erl.O and
erO.lG (13) were also sald to exist. These highly reduced phases were
observed in extremely small quantities via a scanning electron microscope
(SEM) .

| No preéious work had been carried out in the CsI—Zr—ZrI4 ternary
system. However, work in the closely related CsCl-Zr-ZrCl, (14) system

ZrI, might be expected while work in CsCl-Nb—NbCl5 (15)

2

indicated that Cs 6



ZrZI might be formed. 1In addition to these two ternary

3
-1odides a third, CsZr6Il4, has been discovered as well as_evldence for

indicated Cs

yet another phase.

The work in the binary and ternary systems is divided into PART I
and PART II, respectively. Each part is then further subdivided accord-
ing to individual compounds (to allow a more indepth look at each),

each with a more specific introduction.



EXPERIMENTATION

Starting Materials

Zirconium metal. Within the Ames Laboratory zirconium can easily

be acquired from Rick Schmidt as a crysial bar v9-12 cm long and 1-2 cm
in diameter. This reactor.grade metal (<560 ppm HEf) ﬂas been obtained
:via_the Van Arkel process. The bar was first cleaned with a metal
cleaning soluﬁion (45% conc. HN03, 457 H20 and 10% HF by volume) and
then rinsed with acetone. In order to cold-roll the metal with minimal
crécking,'the bar was melted into a loaf under vacuum and then cold-
rolled into strips 0.4-0.5 mm thick. From this single strip, smaller

:' strips werelcﬁt to 1/2 x 6 cm strips for ispthermal or small gradient
:eactiqns or 1/2 x 10-12 cm for large gradient reactions. The next'step
was either_to electropolish the strips or to clean them in acetone
foilowed again by the metal cleaning solution. Finally, the strips were
washed once'ﬁore in acetone, dried, and stored under vacuum.

Zirconium tetraiodide. This is the thy zirconium iodide which can

1gasily be ﬁrepared from the reaction of metal and iodine. This was
achieved by‘geacting gaseous 12 (reagent grade, <0.005% Cl and Br) from
a reservoir at A150°C with excess metal heated to ~350°C in an evacuated
and sealed Pyrex container. The orange-red tetraiodide was deposited in
_ a sectilon of the tube which protruded out of the furnace. The product
was purified by vacuum sublimation (<10_5 Torr) through a coarse-grade

Pyréx frit at 400°C. As a precaution, ZrI4 when initially sublimed was



sealed in éeveral containers in 2~4 g quantities to avoid any large loss
due to an accident and to avoid repeated exposure to the dry box atmos—

phere.

Cesium lodide. CsI (Alfa Products) was recrystallized from a 0.05

wt. 7 aqueous HI solution and then dried (350°C) and stored under vacuum.

Synthesis

When considering the synthesis of reduced early-~transition metal or

rare-earth‘metal halide compounds, several problems come to mind: 1)
1 the air and moisture sensitivity of almost all compounds, 2) the high

temperatures (600-100°C) often required to obtain these compounds, 3)
the high pressures (up to 30 atm.) obtained when the more volatile
reactants are heated to these high temperatures, 4) the reactivity of
these reduced compounds with fused silica at high temperatures, 5) the
" low yields often obtained (1-15%). In many cases the combination of two
or perhaps all fivelof these problems has made many reduqed metal halides
basically undiscovered until recently. A substantial break came with
the use of tantalum, molybdenum or niobium tubing as reaction vessels.
Prbblems 1-4 stated above can be overcome with the employment of these
reéction vessels since they can be sealed under a vacuum or partial
atmésphere of an inert gas, and they withstand both high temperatures
an& pressures, -and stan&ardly do not enter into the reaction. Problem 5
may in many cases be resolved by using vapor phase transport reaction

conditions to produce single crystal materials on which single crystal



x~ray diffraction may be done. Therefore,-;he substitution of metal
tubing for fused silica or Pyrex tubing has allowed the synthesis of
several new metal halides. .
Tantalum tubes 9.5 mm o;d. were exclusively used as reaction

vessels in the zirconium binary and ternary systems. One end of a
' cléaned tube was first crimped and then welded within an evacuatible
Heliarc welder (16). The tube and starting materials (always sealed
within evacuated Pyrex containers for long'storage) were then taken into
a dry box, the reactants loaded into the tube and the remaining end
crimped via a small vise. To transfer thé tube from the dfy box to the
Heliarc welder the tube was placed in a small container. The only
direct contact with air was the ¢5 second transfer into the weldef,

which was immediately evacuatéd, and then back—filled with a partial
atmoéphere of helium. The tube was then welded. The tantalum Fube was
then sealed in an evacuated fused silica jécket before Being placed in a
.furhace since tantalum is quickly oxidized upon heating in the air.
Temperatures were monitored By a sheathed.thermocouple attached to the
outside of the fused silica jacket. Upon completion, the reaction was .
either allowed to cool slowly in the furnace. by turning off the power,
or quenched in air or water by removing the tﬁbe from the hot furﬁace.

Reaction tubes were opened within a dry box especially designed for

cfyétal mounting and described in detail elsewhere (17). Identification
of phases whichlh#ve a distinctive reflectivity, color or crystal
morphology was achiéved_by.microscopic examination. Individual crystals

were selected and picked up with a glass fiber dipped in Vaseline.



They were then inserted into 0.2 or 0.3 mm diameter thin-wall glass
capillaries. These capillaries were then either sealed inside the dry
box with the aid of a hot nichrome wire or plﬁgged with Vaseline. These
were then sealed outside the box with a gas torch and the ends capped
with black wax (Apiezon W). Crystals ;uccessfuily mounted were re-
examined under higher magnification outside thg box and the best further
examined with oscillation photographs taken with a standard Welssenberg
camera and Ni-filtered CuKa-radiation. Samples for Guinier powder
diffraction were mounted as described elsewhere (11). All remaining
'products were placed within Pyrex storage containers and sealed under

vacupm .
Physical Measurements

X~Ray methods. A variety of x-ray cameras were used. Initially

routine phase identification was made with Ni-filtered CuKa radiation
beam and a Phillips Debye~Scherrer camera‘having the standard 114.59 mm
diameter. In the latter stages of this work an evacuable Model XDC~700
Guinier camera, IRDAB, Stockholm, was mainly used. This focussing

camera yields excellent quality films by using a quartz monochromator

to provide a nearly clean CUKal incident beam in combination with single-
emulsion film or double-emulsion film where only one side was deveiopeq.
Welssenberg camerés, Charles Supper Co., were usually used in evaluation

of possible single crystals.and preliminary determination of unit cell

constants, ﬁith a precession camera, Charles Supper Co., being used at

times.



Single crystal x-ray diffraction data were collected on the Ames
Laboratory four-circle diffractometer iﬁterfacéd with a PDP-15 computér.
Moﬁa radiation monochromatized with a graphite single crystal A=
0.70954 X) was used in all single crystal studies.

Resistivity measurements. Resistivity measurements were carried

out by Dr. T. Hsiang by standard 4-probe techniques. The probes were

attached to a single.crystal with silver paste.
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PART I. THE BINARY Zr-ZrI4 SYSTEM

Initial regctions in tﬁe search for ZrIx (x < 3) phases were
transport-type reactions with 150°C gradients, e.g. 600-750°C, 750-
900°C. This provided a wide variety of temperatures‘té allow the
formation of any possible phase. Then, when a phase was identified
either by a crystal structure or powder pattern, attempts were made to
determine the exact conditions needed to synthesize each particular
phase in lérger.quantities.

From the reaction of ~1 g of ZrI4 with a large stoichiometric
excess (2-4 strips or 2-5 g or a surface area of 12;24 cm2) of zirconium
in a 700-825°C gradient for approximately one month the products were:

black blade-like crystals, a black powder, and Zrl The crystals (207

3°
yield) were found growing on both the metal and walls of the tantalum
tube in the ~750°C region. The black powder (n10% yield) coated the
entire surface of the metal strips while the ZrI3 (v70% yield) was in
the cold end of the tube. Powder patterns of both the crystals and
black material agreed with that of "Zr11.8" (11). However, the a-ZrI2

data crystal was mounted from a reaction of this type (see the "ZrI1 8"

RESULTS). The hypothesized sequence of reactions needed to form
crystals of diiodide (assuming, at least for this illustration, that
" " .

ZrIl.S is ZrIz) are:

T
) ZZrI4(g) + Zr(s) ::éé: 3Zr13(g) (endothermic)
Ty
(2) ZZrI3(g) —_— ZrIz(s) + ZrIa(g)
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When T2

mentioned above were obtained. However, if T, and T; were increased to

and T1 were 700 and 825°C, respectively, the blade~like crystals

800  and 900°C, respectively, gem crystals of B—ZrI2 (Zr6112) were
deposited (&10% yield) in the 850°C region while a black layer of

B-Zr12 (v5% yield) coated the entire metal surface and unreacted Zf13
(~85% yield) condensed in the cold zone on cooling. There appears to

be an overlap in the stability regions for « and B—ZrI2 since both blade
and gem crystals have been observed together between 800 and 825°C.

The low yields of ZrIx (x < 3) products are thought to be caused
by blockage of the metal surface which prevents complete reduction of
ﬁhe more oxidized species. In a reaction such as that mentioned earlier,
nlog ZrI4 and 3-6 g Zr, as the temperature inéreases ZrIA(g) is reduced
to ZrIs(g) with a layer of’ZrIB(s) being deposited on the metal surface.

Then as thevtemperature increases the ZrI, may be directly reduced to

3

form a layer of ZrIz(s) (=, "ZrI, ." or 8 depending on the exact temper-'

1.8
ature). This less volatile ZrIZ(s) (the assumption that ZrIz(s) has a
low vapor pressure is not unfounded (18)) is thought to block the metal
surface. ‘At this point the transport reaction, equations 1 and 2,
becomes predominant and crystals, up to 2-cm-long blades (700-825°C,

o-Zrl "ZrIl 8") or 0.2-0.5 mm gems (800—975°C,‘B—Zr12), are slqwly

.2’
deposited upon the layer of diiodide coating the metal as well as the

wall of the tantalum tube. Because the surface of the mccal is blocked

unréacted Zrl remains and is condensed in the coldest zone of the tube.

3
From this explanation it would seem that the addition of extra metal

should result in higher yields. However, a little ZrIZ(s) seems to go
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a long way so that even small quantities of ZrI4 (0.02 g) reacted with
3-5 g of metal result in unreacted Zri, (T > 900°C).

In attempts to produce other reduced phases virtually every
possible temperature region from 700-1000°C has been explored by either
isothermal or gradient reactions. All temperatures above 900°C were
explored by both small and large gradients, <50°C and 100-200°C,
respectively, while below 900°C most gradients were >50°C. Different
starting materials such as ZrI4 or ZrI2 along with either metal strips
or metal powder were used. 1In addition, the reaction times were varied
from 1-6 weeks and different stopping techniques such as slow cooling
(turning off the power to the furnace) or airvand.water quenching were
employed. The use of different starting materials resulted in the
same products although only a small amount of work has been done with
the powdered metal. Both slow cooling and air quenching also produced

thé same products, the only difference being the first allows ZrI, to

3
deposit in the cold end as crystals while the latter yields a.fine
powder of ZrI3 throughout the tube. Water quenching in some cases
produced, in addition to Zr13, small quantities of ZrI4 (~107%) presum-
ably via some type of a disproportionation. Reactions generally pro~
ceeded for two ﬁeeks; if single crystals were desired via a transport-
type reaction then they proceeded for 4-6 weeks.

Though not completely understood, blade-like crystals have been
seen at unusually high temperatures in two reactions. Reactions 21

and 35 (19) were &870-950°C gradient reactions which contained 0.5 g

of ZrI4 and V3 g of Zr strips. Each reaction proceeded for ¢1 month.
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Upon opening, ZrI3 (80%) was found in the cold end of the tube along

with g~ZrI, gem crystals, while the entire length of the metal strips

2
was coated with a layer of B—ZrIz. Blade-like crystals (5%) were

found in thé hot end of the»tube both on the layer of B-—ZrI2 and on the
wgll.of the tantalum tube. One of the crystals mounted from reaction
21 was found to have an orthorhombic cell (a = 3.738(1), b = 6.817(2)
and g_= 14.860(4) R) very similar to the monoclinic cell of a-—ZrI2

‘ (see erl.S section). No cher phases have been seen or identified by
_either powdér'or single crystal x-ray diffraction. In addition, no
phases are thought to be stable above v975°C since only aﬁnealed metal

strips and ZrI3 have been obtained at such high temperatures.
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THE SYNTHESIS AND STRUCTURE OF AN INFINITE CHAIN

FORM OF ZrIz(a)1

lln press: D. H. Guthrie and J. D. Corbett, J. Solid State Chem.
38 (1981). '
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INTRODUCTION

Several reduced zirconium halides with zirconium in an oxidatdion
state less than three have recently been synthesized and characterized.
Amopg the chlorides and bromides are the clusters Zr6CR.15 (20) and
Zr6_}(l2 (21), ZrCJZ.2 (3R—MoSz-type) (22,23), and the double-metal~layered
ZrC% (17,24,25) and ZrBr (26) compounds. Yet until feceptly the only
well.characterized zirconium iodides were ZT'I4 and Zr13, both known for
their importance in the purification of zirconium via the van Arkel
process. The triiodide has been found to be nonstoichiometric over the

range ZrI2 83 (775°C) to ZrI (475"0), with a recognizable super-

3.43
structure to x-rays at the upper limit (9). The synthesls of a zircon-
ium diilodide ﬁas béen reported by Sale and Shelton (10) ffom the dispro-
portionation of ZrI3 under a 360/390°C gradient in a sealed Pyrex tube,
However, the reported powder pattern has been found to correspond

closely to that of the lower_limit triiodide ZrIZ.B (9). Lack of
_earlier evi@ence for zirconium iodides more reduced than the ZrI3 phase
appears to have originated méinly from the use of reaction times which
were too short, temperatures which were too low and, probably, glass
containers. Increases in these two parameters and the use of sealed

. tantalum containers have enabled the synthesis of the cluster ZrGI12 (20),
and the present article reports on a second polymorph of ZrIz, an infi-

nite metal chain form. The new phase is stable at lower temperatures

(775°C) than Zr6I12 (875°C) and therefore is referred to as a=Zrl,.
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EXPERIMENTAL SECTION

Materials and Synthesis
Materials. Reactor-grade crystal bar zirconium (<500 ppm Hf) was
melted into a loaf under vacuum, cut into 2 mm thick slices, and these
were cold-rolled to strips 0.4 - 0.5 mm thick. The strips were then
elther electropolished or cléaned in acetone and then in a solution of

45% conc. HNO,, 457 HZO’ 104 HF to remove any hydrocarbons and surface

39
impﬁrities picked up during cold rolling. The strips were then washed
with acetone, dried, and stored under vacuum.’

The tetraiodide was prepared by reaction of gaseous, reagent-grade
iodine (<0.005% C% and Br) from a reservoir at ~150°C with excess metal
" heated to 350-400°C within a sealed Pyrex container. The product was
purified by vacuum sublimation (<10-5 Torr) through a coarse grade Pyrex
frit at 400°C. Transfer and manipulation of all materials was done by
~ standard vacuum-line or dry box techniques.

'Synthesis. The use of sealed tantalum tubing as a reaction vessel
for high ;emperature reactiqns involving lower halides of zirconium has
proven very successful (9,17,23,24,26), and this approach was continued.
The containers were induction cleaned (1800°C), arc welded under helium
after filling, jacketed in fpsed silica tubes and sealed off under
vacuum. Temperatures were monitored during the reaction wifh thermq-
couﬁies fastened to the outside of the silica jacket. Any temperature
difference between the Ta container and the outside of this jacket is

considered small at the temperatures involved and fairly constant from

reaction to reaction.
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The initial synthesis used ~l1 g of ZrI4 with a large excess of
zirconium strips which extended the length of a 10-12 cm long, 0.95
cm o.d. tantalum tube. The reaction was carried out for four weeks
under a 750/850°C temperature gradient after which the container was
allowed to cool in the furnace. Long reaction times are required to
overcome kinetilc problems known in this and similar systems (23,27),
and the temperature gradient allowed formation of phases which might
be stable only in a limited temperature region. A 10-20% yield of lath-
like crystals with a high metal-like luster were found growing in the
775°C region on the zirconium strip as well as the inside walls of the
tantalum tube. These are thought to have been produced via the trans-

port reactions

850°C
BZrI4(g) + Zr(s) —— 4ZrI3(g) (endothermic)

followed by
775°C

ZZrI3(g) === o-ZrI,(s) + ZrIa(g) .

Subsequent reactions have indicated that the metal in the 775°C
region first becomes coated with a powder and small crystals of a-ZrIz,
presumably because of the presence of a large number of nucleation
sites and a high PZrI4 in the early stages of the reaction. As the
reaction proceeds larger crystals are formed, sometimes up to 2 cm long.
A temperature zone <775°C (750°C) is necessary to allow separation of

any ZrI3 formed from a-ZrIZ.
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DATA COLLECTION

The Ta tube was opened in a dry box especially designed for crystal
mounting, and.suitable specimens selected under low magnification.
These were sealed in the capillaries with the aid of a hot nichrome wire
and later resealed outside the dry box with a gas'flame. The single
crystal.selected for data collection was chosen with the aid of oscilla-~
" tion photographs and had extreme dimensions of 1.17 x 0.08 x 0.01 mm.
Data for the?indicated monoclinic unit cell were collected at ambient
- temperature §n an automated four-circle diffractometer designed and built
in the Ames Laboratory (28) using MoKa radiétion'monochromated with a
gr;phite crystal (A = 9,70954vX). All data within a sphere defined by
26 < 50° were collected in the HKL, HKL, HKL HKL octants using an w-scan
ﬁode. Peak ﬁeights of three standard reflections did not show any
significant change over the period of data collection. A total of 1427
of the 1750 reflections checked were classed as observed by the criterion
I ; 30(I). The observed intensities were corrected for Lorentz and
polarization effectshafter which appropriate averaging of duplicate
reflections yielded 669 independent data. Final monoclinic cell
parameters and their estimated standard deviations were obtained from
the same crystal by a least-squares fit to 26 values of 12 reflections
randomly distributed in reciprocal space (27° < 20 < 44°) which were
tuned for both Friedel-related peaks; the result was a = 6.821(2), b =

3.741(1), c = 14.937(3) & and B8 = 95.66(3)°. The edges of the crystals
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lie parallel to the cell axes and the crystél dimensions are inversely

related to the axial lengths.
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STRUCTURE DETERMINATION

The unit cell was indicated to be centriplbased on a Howells-
Phillips—Rogers test of the intensity distribution, and since no extinc-
tion conditions were noted the monoclinic space group P2/m was chosen. |
Placement of all atoms on the mirror planes at y = 0.0 or 0.5 appeared
likely based on the short b axis, 3.74 R, which is essentially the van
der Waals diameter of iodine.

Trial atom positions were obtained by a direct method using
MULTAN (29).‘ Several sets so produced were eliminated on the basis of
chemical and structural common sense. After full-matrix least-square
refinement of positional and isotropic thermal parameters fqr the best
set, an R = ZIIFOI—IFCII/ZIFOI = 0.107 was obtained. Closer inspection
of the strucﬁure and data set at this point revealed the existence of
a two fold screw axis (0kO, k # 2n absent); therefore, the correct space
group is PZl/m (No. 11) with all atoms on the special position 2e.

Refinement with anisotropic thermal parameters then produced a R = 0.071
and R, = 0.010 where R = [2w(|F0|-|Fc|)2/|w2F°|2]1/2 and w = UF_Z.
Need for an absorption correction was indicated by elongation of the

- thermal ellipsoids along b, the shortest crystal axis. The correction
utilized the program TALABS (30) and an absorption coefficient of p =
190.cm—1 (31) and the crystal was approximated as a rectangular box of
extreme dimensions stated earlier. Because of the large differences in

crystal dimensions, transmission coefficients varied from 0.25 to 0.82

and chi and phi settings for the faces were found to be critical.
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After this was comple;ed (R = 0.065, Rw = 0,115) the stronger reflec-
tions were observed to have larger values of w||F0|-]Fc||. The data
were therefore reweighted in groups sorted on F0 to give final converged
residuals R = 0,064 and RW = 0.079, with a final shift/error of <0.001
for all atoms. The thermal ellipsoids were now more reasonably shaped,
and the standard deviations were "15% lower than before. A final

3
Fourier difference synthesis map was flat to < 1 e/ at all points.
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DESCRIPTION OF THE STRUCTURE

Final positional and thermal parameters for the structure of a-

~ 2rI, are listed in Table I and significant distances and angles, in

2
Table II. Structure factor results are in Appendix A.

An approximately [010] projection of the structure is shown in
Figure 1. The iodine positions can be related to h.c.p. layers normal
to ¢, with meﬁal atoms (solid) occupying all octahedral sites between
" alternate layers to form slabs analogous to those in the CdI2 structure.
~In the preseﬁf case, however, the metal atoms are displaced 0.440 'S
from the centers of the octahedral sites toward shared edges of the
.polyhedra to form zig-zag chains parallel to b. This displacement of
the metal atoms causes the ilodine layers iﬂ each slab to buckle, and
packing of these_buckled layers in effect réquires a second slab with
independent‘a;oms. Equivalent distances in the two independént slabs
all differ by less than 30 (Table II) excepﬁ that the 14° - IZb and
142 - 12 distances differ by 60 (0.016 8) in opposite directioms.

The [001] projection in Figure 2 shows two iodine layers and the
intervening metal layer which lies at z & 0. The two iodine octahedra
outlined share a common edge (I2b & I2) through which the presuﬁed Zr-
Zr bond passes. Edges of these polyhedra range between 3.74 and 4.47 R
exqut for the shared edge IZb - I2 which is 4.89 2. This elongation
results when the adjacent shared edges of the occupied iodide octahedra

are pushed apart to make room for the Zr-Zr bonds. Corresponding

effects are observed in the zirconium-iodine distances.
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Table I. Crystallographic data and atom parametersa for a—ZrIz.

Composition: ZrI

2
Cell: monoclinic, P21/m (no. 11), 2 = 4

= 3.741(1) &, c = 14.937(3) &,

!

Lattice parameters: a = 6.821(2) X,.E

B = 95.66(3)

Refinement: R = 0.064, Rw = 0.079 (669 reflections, 26 < 50°)

x z Bi1 By B33 B3
11 0.6031(3) 0.6095(1) 1.13(6) 0.53(6) 1.42(7) 0.07(2)
12 0.4498(3) 0.1473(1) 1.47(7) 0.62(6) 1.18(7) 0.02(2)
13 0.8881(3) 0.3528(1) 1.34(7) 0.57(6) 1.30(7) =-0.05(2)
14 0.0545(3) 0.8901(1) 1.17(7) 0.58(7) 1.39(7) = -0.02(2)
Zrl 0.1892(4) 0.5036(2) 0.93(9) 0.76(8) 1.44(9) =0.00(3)
Zr2 0.6880(4) 0.9969(2) 0.95¢(9) 0.81(8) 1.26(7) =0.01(3)
8y = 0.25.
b, _ 2 %2 2, %2 2 *2
T = exp [(—1/4(Bllh a "+ Byk'b "+ Byye'c
2 k** 2 % % 2 kb**‘
+ B12h ab + Bl3h£a c + B23 b c )]s

B12 = B23 = 0 by symmetry.



Table II. Important distances (X) and angles (deg.) in the two

independent units.
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al—x, l-y, 1~2z,
e1+x, ¥, 2-1,

1ox, 1-y, 1-z,

Distance

Zxr~Zr, Intrachain

of

2a

Zr - Zr, Interchain

2f

Zr-1

N NN
rh Fh Fh b
i I
NSNS

1 - I, Intrasheet

2

-2

-2

NN NS NN

a

c

i

[- . ]

b

oM An

f
X, ¥, 2-1,

3.183(3)
3.741(1)

4.642(4)

3.096(2)
2.896(3)
2.973(2)
2.936(2)

3.909(2)
3.950(2)
3.741(1)
3.741(1)
3.911(3)
4.469(3)
4.887(3)
5.904(3)

g

=Xy -y ’ 1"2

h
-X, l-y, 1-z, 'x-1, vy, z,

1-18
18 - 1J
1-12
1-1
1-30
1-12
1 - 3%
1 - 3%
12 - 3P
12 - 1©
32 - 3¢
1-1°2
12 - 32
32 - 3P
b3

bl"'x’ l-y, -z, cl"x’ -y, 1l-z, dl"x’ -y, —2,

3.181(3)
3.741(1)

4644 (4)

3.099(3)
2.895(3)
2.973(2)
2.933(2)

3.925(2)
3.934(2)
3.741(1)
3.741(1)
3.914(3)
4.470(2)
4.884(3)
5.902(3)
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I - I, Intersheet

12 -2

48 - 3

42 - 12

3 -2

2 - 3P

12 - 48
Angles

]

42 -2 -y
43 2f _ 2b
P = of _ pd
LI LA
a _ 2f - 4t
LI L
a _of

I ~-1-1, Intrasheet

2 48 - P
48 - 2P - od
4% - 2 - 42
2 - 43 - 4C

4.132(2)
4.136(2)
5.885(3)
4.068(2)
5.143(2)
4.948(3)

77.97(7)
98.26(4)
79.15(7)
80.15(7)
80.23(5)
113.85(6)
84.58(6)

57.18(3)
61.41(2)
56.54(3)
61.73(2)

I -2r - 1, Coordination Polyhedra

12 -1 -1°
R
3% -1 -3¢
33 .1 -1

1*-1-1

32 -1 - 3P
13 -1 - 3D
3% -1 - 3%
1-3%-3°
16 - 30 -2
c LIS LN L

77.97(6)
98.35(4)
79.23(6)
81.13(6)
80.23(6)
113.84(6)
84.18(5h)

56.92(3)
61.44(2)
56.78(3)
61.61(2)
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Figure 1. The a-2rI, structure viewed parallel to the Zig—zag metal
chains and the short b axis. Zirconium and iodine atoms
are represented by solid and open ellipsolds, respectively.
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View of two iodine layers and the intervening zig-zag metal
chains with two iodine octahedra which share a common edge

outlined., All atoms lie on mirror planes at y = 0.25 and

0.75. The iodine atoms partially darkened lie toward the
viewer.
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The metal-metal distanceé in a—ZrI2 are closely comparable to those
in the cluster Zr6I12 (B—ZrIZ) despite the lower number of metal neigh-
bqrs in the former. The two Zr-Zr bonds per d2 metal in a-Zr12 are
formally single bonds but a substantial bonding restriction (matrix

- effect) is superimposed by the edge sharing of the distorted iodine
octahedra, and the 3.182(2) % distances observed corresponds to a Pauling
bond order of only 0.31. 1In B-ZrI2 each zirconium has pairs of metal
neighbors in the Zr6 octahearon at 3.195(1) R and 3.204(2) R. These
are now formally bonded by half bonds and although repulsions between
iodine atoms wﬁich bridge edges of the metai octahedron clearly restricf
the approach;qf the metal atoms this is not as severe as in u-ZrIz.
Since the metal-bonding electrons do not screen the iodine atoms, the
Zr-1I distances are very similar throughout, 2.895(3) - 2.973(2) R for

- the closer five in a-ZrI2 vé.'2.860(2).— 2.947(2) R for the closer four '

in B-ZrIé,‘ahd 2.863 R for the average in ZrI4 (8). The transformation
from o~ to BerI2 at high temperatures involves a loss of two Zr-I bonds
and a gain of two Zr-Zr boﬁds, and is thought to be largely entropically
driven to the more open structure (the center of the Zr6 gluster
corresponds to a missing iodine atom in a close-packed layer).

| Thg metal-metal interactions in the a-Zr12 chains still must be
classed as "strbné" since the 3.182 & separation is less than the

3.204 & average distance found in the (12-coordinate) metal. The

result is a filled band semiconductor experimentally, with p = 22 ohm-

em and Eg = 0.1 eV at room temperature according to four probe measure-

ments. No esr signal is observed at 94.7 Hz at either 20 or -196°C.
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In a localized sense one can view the sigma bonds as generated by dxz

and dxz-yz orbitals, and these generate a filled band.
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DISCUSSION

The o~Zrl, described here is isostructural and isoelectronic with
B—MbTe2 (32), and as such represents the first_halide found with this
particular structure. A considerable similarity also exists with the
higher symmetry WTe2 (space group anZl), the only difference being a
smaller dispiacement of one slab with respect to another so that the B~
angle, Fig. 1, decreases to 90° and an n-glide develops parallel to C.
In fact an inéipient n-glide in that directioﬁ is evident in the posi-
" tional parameters in a-ZrI2 except for the x-coordinates of the 1odine
atoms (Table I). In contrast with a—ZrI2 however, MbTe2 is a semi-

3 ohm-cm at 25°C (33).

metal with p = 2 x 10°
Structural similarities between reduced metal sulfides and selen-

ideé with those involving isoelectronic chloride and bromide anions are

relatively rafe. A direct relationship exists between M082 and one

polymorph of ZrC% (23) as both have the 3R—M082 type layefed structure

with trigonal prismatic coordination of the metals, while a lesser ele-

menf of similarity occurs between.HfZS (34) and HfC% (26) where both

cdntain infinite double metal layers but these are separated by a different

number of nonmetal layers. The lack éf more S vs. CL and Se vs. Br

structural similarities has been attributed to the greater covalency of

the chalcide relative to that in the isoelectronic halide (35). Not

surprisingly, ilodine which bonds more covalently exhibits a larger number

of ilsostructural relationships with the chalcides. Examples of these
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include PrI2 and MoS2 (2Hl and 3R types), GdI2 and M082 (2H1) (36), ThI2
and AH--NbS2 (37), and that seen here for B-—Mo'l‘e2 and a-Zrl,. Even so,
mixing of iodide and metal valence orbitals is presumably less, making
the bands narrower and metallic conduction less prevalent than in the
chalcides.

An indication of the M-M bond strength in a-Zr12 and similar
distorted structures may be found in the magnitude of the lattice
strain which accompanieé M—M bond formation, specifically the amount
of polyhedral distortion reflected in the ratio of the shortest to the
longest M-X bonds (33). These ratios are 0.935, 0.959, and 0.962 for
‘a-Zrl,, B-MqTéz and WTe,, respectively, indic;ting that a-Zrl, has
the strongesﬁ M-M bonds or the weakest M-X bonds. On the other hand,
the metal-metal distances in both B-MoTe2 énd a-ZrI2 are comparable,
being 10.5 and 10.7% greater than the corresponding single bond dis-
tances. Thﬁs, relative to the semimetallié B-MoTe2 the strong M-M
bonding or gfeater distortioﬁ in a—Zr12 combined with the greater
' separation 6£,atomic orbital energies for zirconium and iodine causes
a separation of a filled valence band and the empty conduction band
and- gives a semiconducting a-2rI,.

The adoption of a distorted CdIz—type structure for these can
easily be understood in terﬁs of the extra stability obtained from the
formation of two relatively short M-M bonds. The possibility of an a-
ZrI2 -+ B-ZrI2 transition at an observable rate seems reﬁote, as this

would require more than a simple intralayer rearrangement of the metal

atoms, although such a transition is thought to occur by a topotactic
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path between the Cdczz—type structure of PrI2 (IV) and the cluster
(Pr414)14 (type V) form (36). The transition from the oc--ZrI2 structure
(P21/m) to an undistorted CdIz—type (P3ml) structure, which requires
only an intralayer displacement of the metal atoms, is allowed by
Landau's theory of second order phase transitions (38) but is at
presgnt unknown. A similar transition has been observed between the
MnP and NiAs~type structures of VS (39). In addition, there also
exlsts the possibility of a low-temperature first-order phase transition
in oc-ZrI2 tﬁvthe an21 structure of WTez. This has been observed for
(metastable).B-MoTe2 where the B angle varies discontinuously from
93.92° (P2l/ﬁ) to 90° (an21) within the temperature range 17°C =+ -40°C"
(40), the low temperature orthorhombic structure thus being produced
-via.a shear deformation of the nonmetal layers perpendicular to the ¢
axis, The pseudosymmetry relating atomic céordinatks in the present
structure (Table I) that was noted earlier reflects this potential.

A series of orthorhombic zirconium diiodides has recently been
repor;ed (41) which had cell parameters: a = 3.74 X, b =6.93 X,
g_=.n x 14.85 X, where the n = 24 polytype was studied the most. These
were obtained in the 760-780°C temperature range and were thought to
contain "alternating I—Zr—i double layers". Since the axial lengths
are similar to those reported here, these may represent polytypes of a
WTez-type structure or, less likely, 2H-Cd12, with pairs of three

- layer slabs in the simple unit.
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STRUCTURE OF B-ZrI A M X , CLUSTER

2} 6712
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INTRODUCTION

Binary halogen-bridged clusters of the early tranéition metals such
as MGX?; (n.= 2,3,4) and Méxg+ (m = 4 principally) which coptain an
octahedral cluster of metal atoms have been well-known for several years
(42). The transition metals usually associated with these compounds are
M = Nb and Ta and M* = Mo and W. Recently, however, some newcomers have
appeared on the scene: Zr6Clls, Sc70112 and Zr6I12 (20). This trio has
facilitated 'a new trend of thinking: that six atom clusters can indeed
. be stable even though they may contain as few as 9 e/cluster, as is the
case for Zr6C115 and Sc%Cilz. Prior to this no clusters were known with
fewer than 14 e/cluster and no discrete clusters of any sort had been
made with elements earlier in the transition metal block than group V.
Even now this trio has already been expanded to include Zr6C112 and
Zr Br (21) which are isostructural with Zrgl,, as well as La7I12 (43)

6 12

which is isostructural with Sc7C112.

in groups III and IV is partly because suitable containers have only

The late arrival of metal clusters

recently been known, but also it may be attributed to kinetic problems
of formation'rather than thermodynamic limitations of stability. A
communication containing the original trio has appeared (20); Zr60115
and Sc7C112 are discussed in more detail in Daake's (11) and
Poeppelmeier's (44) theses, while a more-detailed discussion of Zr6I12

will now be presented.
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DATA COLLECTION

Gem crystals of B-ZrI2 were sealed in 0.3 mm thin-wall glaés
capillaries under a dry nitrogen atmosphere. A single crystal, 0.25 x
0.35 x 0.45 mm, was selected via oscillation photos, indexed and dif-
fraction data were collected on a rhombohedral cell with the hexagonal
axes a = 14;502(2) and ¢ = 9,996(2) % based on tuned 26 values for 12
reflections (30 < 26 §_44°). Two octants of data, HKL and HKL, (Ze.i
50°) yielded'1119 observed (I > 30(I)) reflections which, when reduced

. and averaged in Laue symmetry 3, gave 609 independent reflections.



36

STRUCTURE DETERMINATION

Initial least-squares refinement on two iodine atoms and one
zirconium atom (18-fold general positions) obtained via MULTAN (20) gave
anNB = 0.14. At this pointva difference map indicated negative peaks at
the atom positions. Examination of the data revealed low angle (26)
reflections had Fo's significantly less than Fc's and that the large
intensity reflections (Fc > 700) also had Fo < Fc indicating absorption
and secondary extinction problems (45), reépectively. Therefore, the
raw data wefe corrected for absorption by TALABS (29) with a crystal
shépe defined by nine intersecting faces and a u = 178 cm-1 (31). The
" data were again reduced and averaged and input into EXTLSS (46) (a
least=-squares progfam which also allows correction for secondary
extinction).l |

The isotr;opic full-matrix least-squares refinement converged at
R=cz||F | - |F ||/|F | = 0.150. Final least-squares refinement with
. anisotropic thermal par#meteré, including.reweighting (10 groups for
609 reflectioné, original wAz's varied from 0.377 - 3.197) resulted in
2]1/2

2
an R = 0.109 and R = [Zw(qul - [F D7 /30|F ] = 0.121. A final

difference map was flat to < 1 e/R3, even at the center of the cluster.
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DESCRIPTION OF THE STRUCTURE

Final positional and thermal parameters for B~Zr12 are listed in
TaBle_III and important disfances and angles, 'in TableAIV. Structure
fagtor results are available in Appendix B. In Figure 3 the cluster
(Zr6112) is viewed with the 3 axis vertical; approximately c.c.b.
lodine layers stack verticélly while zirconium atoms form a trigonal

antiprism on either side of the middle iodide layer. The Zr-Zr inter-

'layer distances are slightly shorter than the intralayer bonds, 3.194(1)
% and 3.204(2) R, respectively. The average Zr-Zr distance in this
cluster is Basically the same as those.observed in a-Zr metal where the
avefage Zr-zr distance is 3.204 & (6 neighbors each at 3.179 R and
3.231 ) (7).

. In Figure 3 there are six zirconium atoms and eighteen iodine atoms
~ yet thé stoichiometry is Zrelyg. This 1s determined by the sharing of
the iodines between different metal clusters. The six solid-black I2
atoms whiéh bfidge the edges of the two metal triangles, three above
and below the cluster, bond only to the cluster shown and therefore
afé considered inner (1) iodines. The si# striped Il atoms about the
waist of the‘cluster, bridging the two metal triangles, also occupy an
exo positibn in a neighboring cluster and are referred to as inner-
ouﬁer (1-a, a = aussen_(42)). Finally, the six dotted Il atoms in exo
positions, ﬁhree above and below the cluster, also bridge metal tri-
angles in a neighboring cluster; that is to say they bond in the

opposite manner as the striped iodine atoms just mentioned and are



Table III. Crystallographic data and atom parameters for Zr6IiZ.

Composition: .Zr6112,. Z=3
Cell: trigonal, R3 (No. 148)

Lattice Parameters: a = 14.502(2) R, c = 9.996(2) gb

Refinement: R = 0.109, R.W = 0.121 (609 reflectiomns, 26 < 50°)

a

P-4 y z . B11

Bys B33 Bio B3 By

Ilb 0.35512(8) 0.10264(8) 0.33260(9) 2.14(6) 1.83(6) 1.5(1) 0.65(2) 0.23(2) 0.15(2)

12¢ 0.12625(7) 0.17765(8)  0.3246(1) 1.64(6) 1.96(6) 1.2(1) 0.45(2) -0.102(2) -0.25(2)

Zrl 0.1430(1) 0.0406(1)  0.1303(1). 1.07(6) 1.01(6) - 0.7(1) 0.25(2) 0.02(2) 0.0Q(Z)

a,, _ 2 %2 2 %2 2 %9 % % * % % %
T = exp| 1/4(Bllh a "+ Bzzk b~ + B332 c T+ ZBlzhka b + ZBl3hza c + 2323klb c)l.

bInner-outer (i-a) and outer-inner (a-i) iodine atoms.

CInner (1) iodine atoms.

8¢
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Table IV. Important distances (X) and angles (deg.) for Zr6112.a

Distances Bond angles

Zr-7Zr
3-3d intralayer 3.204(2)
3—3b interlayer 3.194(1)

Zr-12 Zr-I12-7r
3o 2.860(2) 67.96(5)
3-2 2.873(2)

Zr-11 Zr=-T1l-Zr
3-1°¢ 2.917(2) 66.02(4)
3b;¢ 2.946(2)

Zr-TI1

d

3-1 3.406(2)

a .
Superscript letters are symmetry operations for atoms in Figure 3.
Ys¥Y=X,—2

©1/3-y,x~y-1/3,2~1/3

d
“YsX=Yy,2



~Figure 3.
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&

The Zrgljg cluster with the 3 axis of the cluster vertical

“and the zirconium atoms connected by heavy lines. -The iodines

are coded according to their bonding between clusters: solid
I2 atoms are immner (i), striped Il atoms are inner-outer (i-a)
and dotted Il atoms are outer-immer (a-i). Distances are in
ngstroms and angles in degrees. The letters in atom identi-
fication refer to symmetry operations, Table IV.
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designated as outer-inner (a-i) iodines. Therefore a more nearly precise
description of the ZrgL , clugter is'Zr616iIé?g/316?I}3. The Zr-I
distances agree with this bonding scheme: the Zr-Ii distances of 2.860 -
2.873 & are shorter than the Zr-I+ 2 distances, 2.917 - 2.946 &, which
are shorter than the Zr-Ia_i distances of 3.406 . The Zr6112 cluster.
can also be viewed as made-up of lodine and metal layers which stack in

a cublc-closest packing sequence (ABC...). This is described elsewhere

(44).
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DISCUSSION

3 3

. . _ .
?he two compounds ZrGI12 and Sc ScCl12 (Sc70112) are closely

" related; the metal and halide atoms occupy the same positions except for
the cation in the scandium compound. Figure 4 shows a (1120) section of

3+ cation occupies

the Zr6I12 structure. In the R3m space group the Sc
the specia1.§ position (0 0 1/2) which lies directlyvabove and below the

metal clusters along the three-fold axis. As of yet no binary or

ternary zirconium compound with a cation of this poéition has been
synthesized. However, it seems very plauéible that a compound with a

© small cation such as Na+ or K+, which would fit into an iodide octahedral

hole, gould indeed be made (see FUTURE WORK). ;

.. In addition‘to Zr6112 being isotypic with Sch112’ both have
..properties which are similar to those of zr Clls. All three have the 4
'saﬁé crystal morphology, gems with very weil defined faces. There is
.also an intéfesting similarity in their synthetic habits: All have been
observed to form crystals which either grow from a whisker-like crystal
or have a'ﬁhisker crystal attached to them. In the case of Sc70112,

_ thigfwhisker is assumed to have the composition ScCll.45 and an.explan-
ation is_givenlby Pbeppelmeier (44). The existence of sucﬁ g_whisker ;n
the casé_of Zr6112 wgg 9bserved earlier (19). Besides these similarities

,betweep Zr6112; Zr6§l15 and Sc7Cl12 thgre are at 1east.tworstrik1ngl
vdifferences..ﬂFirst, in the final Fourier synthesis difference map no

‘residual elec;ron density is found at the center of the Zr6112,c1uster,

while there are &7 and "8 electrons/g3 at the center of the Zr60115 and



Figure 4. A (1120) section of the Zrgli2 structure which shows only the Zr—I_j_' bonds. The
dots just above and below the clusters are special positions with 3 symmetry which
contain a Sc3* cation in ScyClyo.

£y
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Sc70112, respectively. The absence of residual electron density in a

Zr6C112 cluster in K22r70118 (21) has been reported as well as the
presence of the same in the La7112 (43) compound. Secondly, while

Zr Cl,; and Sc.Cl;, both have only 9 e/cluster, Zrl,, has 12. If a
general molecular orbital bonding scheme is followed for an octahedral
M6X12 cluster with 12 electrons, they would occupy the a5, and tlu (xz,
yz) bonding orbitals with the four remaining electrons going into a tlu
(zz) level (48). Therefore this phase should be paramagnetic with two
unpaired electrons. However, the point group symmetry is D3d and not
0h since the iodides about the waist of the cluster differ from those
above and below the cluster and since the interlayer Zr-Zr bonds are
slightly shorter than the intralayer Zr-Zr bonds. Therefore, on going
from 0h > D3h the tlu level splits into an e, and an a5, level. Now
the four electrons pair up in the lower energy e, level. This is con-

sistent with the absence of any esr signal for this phase at either

room or liquid N2 temperatures.
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" "
THE "PHASE ZrIl.8
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INTRODUCTION

A phase identified as ZrI1 8 was first synthesized and its x-ray
powder pattern reported by Daake (11). It was supposed to be the
lowest limit in a composition range Zrl_, 1.8 < x < 1.95, obtained from

the reaction of ZrI, or ZrI4 with a large excess of zirconium at n750°C

3
for two weeks. The initial thrust of this research was to obtain single

crystals of "ZrI1 8"; in that attempt the phases o~ and B'-ZrI2 were

synthesized and identified.
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RESULTS

A problem deyeloped; in thaf though a-ZyIz had been well character-
ized and crystals could easily be obtained, a pure o~phase powder
pattern had never been observed, but rather a "erl.B" pattern. Subse-
quent Weissenberg work on some of the sipgle oc-ZrI2 crystals also
revealed extra reflections, initially assumed to be due to a superstruc-
ture. Instead, a twinning mechanism was found which has shed new light
on the powdef pattérn reported for "erl.S"' |

The Weissenberg'photdgraphy contained extra reflections in the hOf
festoons. Howevér, rather than occurring in an ordered fashion, where
each festoon would have extra reflections in the same location, the |
extra refleetions were spaced: None in tﬁe obz, 4[5 in the 1048, &1/2
in the 202; n1/3 in the 302, ~1/6 in the 462.and none in the 50%.

The twinning was first assumed to be due to the intergrdwth of mono-
clinic cells in different orientations. However, when a*c* reciprocal
“nets for two monoclinic cells were_superimposed, the observed pattern
for the extfa reflections'éould not be obtained. Therefore, via trial
and error an orthorhombic reciprocal net twinned with a monoclinic a*é*
rebipfoéél net was found to prbduce the pattern seen in the Weissenberg.
This twinning mechanism can be seen in Figure 5; the solid lined cell
is the reciprocal a*c* net for the a~ZrI, monoclinic cell; superimposed
. on that is a daéhed reciprocal net for an orthorhombic cell with very
.similar dimensions. The points at which the orthorhombic cell intersects

the hOf festoons agrees very well with that observed in the Weissenberg



48

. 7]
9 o
Ehu
ET &4
2 o
8 @
2 &
i) =
&

o
9
&
.m*
x
g

p == o o

—_c

S

Q o=

IR NP PR S

- c:;

The solid lined cell is the a"c” net from a-ZrIp
while the dashed cell corresponds to a reciprocal net for

an orthorhombic cell of similar dimensions.
show the location of extra reflections on the hOf festoons

The twinning mechanism of a monocl
arising from the orthorhombic cell.

cell.

Figure 5.
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photographs, yielding no extra reflections on the 00% line (a festoon in

‘Welssenberg photography),}while extra reflections were at "4/5 on the
102, ~1/2 on the 202, n1/3 on the 302, ~1/6 on the 40% and no extra

| reflections on the 50% line.A'Reflections higher than 50% could noﬁ be

'verified.

.The'éxistence of an orthorhombic zircoﬁium iodide having cell
parametérs very similar toba-ZrI2 Qas not a surprise. Such a cell had
beeh 6btaineq from a blade-like crystal found in reaction 21 (19) with a =
3.738(1), b = 6.817(2) and c = 14.860(4) &. Since a-7r1, is isoelec-
tronic épd fsostructural with B—MoTe2 (32), ghe assumptionlthat this
orthorhombic.phase might have the closely related orthorhombic WTe2 struc-
ture (32) was only logical, especially since B—MoTe2 is known to trans-

form into the WTe, structure at 250 K (40). Therefore, data were

2
collected on’fhe above mentioned cell and averaged in mmm Laue symmetry
to yiel& 371 iﬁdependent reflections (26 i_50°). The extinctions
observed were correct for WTé2 (Pmnzl). ‘Least-squares refinement of the
atom positions from fhe WTez.structure along with isotropic thermal

parameters ranging from 0.40-1.0 (in a—ZrIz, they were 0.65~1.4) resulted
in an R = 0.20. Further refinement with anisotropic thermal parameters
was attemétedﬁ however, the 822'5 on all the atoms wept negative indicat-
ing a'pfoblem in theiﬁ direction which has not yet been resolved. A
Eourier difference synthesis map obtained earlier using isotropic thermal

parameters held constant at 1.0 and at an R = 0.20 was flat to j;Zelxs

- at all points except the atom positions which had 4-6 /23 (probably due

to the slightly large thermal parameters). Examination of the data from
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the diffract&meter.revealed that the reflec;ion peaks were broad and the
background count high, both being attributable to a poor single crystal.
_No other single crystals with an orthorhombic cell have been mounted and
although a lot of work has 5een done above 900°C; these crystals were
only observed in the gradient reactions 21 and 35 (19). References to
other orthorﬁombic zirconium iodide phases have been made. Déake (1)
reported such a phase with the cell parameters a=3.75, b = 6.85 and ¢
= 15.0 & obtained from Weissenberg work on a product of one of his
‘"Zr11.8" reacﬁions. In addition, a series of orthorhombi; zirconium
diiodides, obtained between 760-780°C, have recently been reported (41)
with a = 3.74, § = 6.93 and ¢ = 14.85 x n %, where the n = 24 polytype
was studied'fhe most.

The fact that an orthorhombic phase has been found to be twinnéd
with o-Zrl, sheds new light upon the powder pattern reported for "ZrIl.B"
(11). Figure 6 contains the graphed powder patterns of a-2r1,, "ZrIl.S"
and an orthorhombic Zrl,. The cell parameters for the last are thése_
stated abéve.while the atom positions used were from WTe2 (32). It now

appears that the "ZrI, ." pattern is a mixture containing a-Zrl,, Zri,

1.8
(WTez), probably intergrown, and a third unknown phase. The two strong
doublets in the "ZrIl.S" pattern at N29°.and n48° as well as the singlet
line at'&12° in 20 differ in intensity from the calculated patterns
because of kﬁown preferred orientation associated with mounting the
sample; Three of the-lines (those having dots above them) unaccounted

for by the calculated patterns are observed to vary independent of the

two calculated patterns in Daake's film data. These lines are stronger



Figure 6. The Guinier x-ray powder diffraction patt
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in powder patterné obtained from more reduced samples (I:Zr = 1.8)
‘relétive to mére oxidized samﬁles (I:Z2r = 1.95). 1f this third‘phase
were a reduced phase, Zrlz_x, it would explain thé low stoichiometries
of 1.8 - 1.95 foﬁnd'by.Daake rather than 2.0.

Finaliy, it is believed that the orthorhombic phase 1s formed at
‘relatiﬁely high temperatures, above 900°C,'while the monoclinic a—ZrI2
phase is found between 700-825°C.: Weissenbergland-powder.diffraction

work has shown all a-ZrI2 crystals to be twinned with varying amounts

of the orthorhombic phase. -
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© PART II. THE TERNARY CsI-Zr—ZrIarSYSTEM

No:pfiqr work in the‘CsI--Zr-ZrI4 ternary system had been done.
However, the compoundstSZZrCI6 (14) and Cs3Nb2C19 (15) were well knowp
, anﬁ_now the analogous zirconium iodides have been synthesized. In addi-
tion to these two compounds a third, CsZr6Il4;.has been discoyered along
with evidence for a fourth. As in the binary systeﬁ, initial reactions
_in this térnafy system were transport-type reactions with n150°C
_gradients, e.g. 600-750°C or 750-900°C. 'This provided a wide variety
‘of temperatures to allow the formation of any possible phase. Then when
a phase was identified either by a crystal strﬁcture or powder pattern,
attempts wefe made to synthesize each phase in larger quantities. Via
ﬁhis.approaéﬁ{‘virtually every temperature region from 600-975°C has
begn expléred. Above 800°C, temperatures were explored by both small
and large graaients, <50°C énd 100-200°C, respectively, while below
800?C most gradients were >50°C. The starting materials were always
erZ’ CsIv(ﬁsually in a 3:1 fatio) and métél. The foﬁr new compounds
.mentiqned above along with their apparent formation ranges have been

- ° .' y |-
Zr,I, (~700-900°C), CsArGIl4 (900

L i \ o °
found.» CSZZrlﬁ (m600_700 C), Cs 21g

3
950°C) and "Q" (~950-1000°C).

-CSZZrIG (éee Appendix C) was obtained in v600-700°C by reaction 3.

(3) 2¢sI + 2ZrI, = Cs

4 ZrT

2776 T

The orange CsZZrI6 crystais grind to a yellow-orange powder.



54

C332r219 was obtained as black crystals, dark green when ground,
between &700-900°C from isothermal or gradient reactions of 0.4 g ZrI4
(0.668 mmoles) and 0.058 g CsI (0.219 mmoles) (an &3:1 molar ratio) with
excess (2-4 g) zirconium strips. The CsI was generally completely
consumed with the remaining ZrIA forming binarj phases. Typical reaction
times were 2-3 weeks.

As 1s often the case, CsZr6I14 was first obtained in an attempt to

synthesize another phase. The original stoichiometry was that shown in

reaction 4.

[-]
+ 37r 830°C€_ cs.zr.T. .

27°378

(4) 4CsI + 3zZrI

4 (p)

The proposed product would have 6e/Zr3 unit and therefore be isoelec~
tronic and possibly isostructural with Zn2M0308 (49). (Hindsight being
20/20 enables one to say that a more reasonable attempt would have
utilized Nal or KI since the smaller cation would probably fit better
in an iodine octahedral hole relative to the larger Cs+ (see FUTURE
WORK).) Gem crystals of CsZr6I14 (crystals 1 actually CsZr6114Hx, see
DISCUSSION in CsZr6I14 section) resulted from this reaction along with
ngzrzlg’ ZrIz and ZrIa.

The balanced equation for the synthesis of CsZr6I14 is shown in

reaction 5. However, when ZrI4 and CsI

(5) 4CsI + 11 Zr + 13 ZrI4 = 4CsZr6I14

were reacted in an n3:1 molar ratio (0.4 g ZrI, and 0.058 g CsI) with

4
excess metal (3 g) for 20 days in a 900-925°C gradient, only ~10 mg
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Vv ofACsZrGIla (nonfibroﬁs rod crystals, crystalé 2) were oB£ained along
with Cs3ZréIg, ZrI2 and ZrI3. The probiem with synthesizing larger
quantities of CsZr6114 appears to be that the metal surface becomes
Elocked as in the binary system. Under such circumstances most of the
CsI goes inta the cesium~rich CsBZrZI9 compound while the remaining
iodine from ZrI4 forms more reduced binary phases.

The yet unidentified phase "Q" has generally been seen above 920°C.
‘ Invreaction Cs 11 (19), fur or hair-like cfystals (5%) were found in the
n970°C region of this m900—9809C gradient reaction. However, similar
crystals have also been seen at somewhat lower temperatg?es, ¢9209C,
| in Cs 18 (19), a 900-925°C gradient reaction. In both éases the
reactants wgré 0.4 g ZrIa, 0.058 g CsI and n3 g Zr strips; whilevthé
" products were‘CSSZrZIQ, CsZr6114, ZrI2 and the fu? crystals. Thus far
all phase "Q" crystals have been too frail for mounting and no-powder
pattern has been recorded beéause of the small quantities.

No othgr phases have been observed; however, in some'tgrnary
réagtions the metal strips have been found to be very brittle. This
usually occurs above 900°C. 1In such cases the metalvcan often be
.ground iﬁto a péwder which yields a powder pattern the same as the
meﬁal itself. ‘This has not been observed in all ternary reactions

containing metal strips above 900°C nor has it been observed in any

binary reactions.



56

THE STRUCTUREIOF CS3Zr219

AND A COMPARISON WITH C83Y219
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INTRODUCTION

. The‘collectioh of enneéhalodimetallates(III), A3M2X9, has been
grqwing ﬁith the developmgnt of new techniques for their preparation
'(56;51). ﬁowever, very.little is known about iodides of this stoichiom-
?{étry and little quantitafive-dafa, i.e., on their crystailstructures,
_vare available. Only CsBB1219‘(52,53)vand Cs3Sb219 (53,54) both crystal-
lizing froﬁ aqueous solution, have béen investigated by means of single
crystal xéray techniques. These have the CsSCréczg-type structure (55)

" with (Egg)z stacking of CsI, layers (alternative description: ABACBC).

3

- All the face-sharing I_-octahedra are filled with bismuth (or antimony)

6
to yield ‘isolated' confacial bioctahedra B12193_ (or Sb2193—).
Coulomb repulsion between the tripositive metal atoms in these and

other M2X93- groups has been said (56) to lead to enlarged M-X distances

and éngles at the_bri&ging’anions cbmpared with those to the termiqal
ones._t |

| At first glance the s&nthesis of thelﬁitle compound, Csszerg,
-ma& appear to bévof no great significance éiﬂcé literally hundreds of
these A M x9 phases are known. However, the Syﬁthesis‘and charéctefiza-'

372

~. tion of CsBZrZI9 along with Cs3Y219 provides a view of a new trend: what

héppens whenvdne_electron per metal is added fo a series Cs3MZI§'to
allow the fo:ﬁation of a metal-bonded species. A somewhat similar

series has been studied in Cs3Cr2C19, Cs3M02C19 7, K3W2019 (58),

where the principal quantum number of the transition metal changes

while the number of valence electrons (d3)Ais held constant. Here the
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metal—metal.diétahce within the bioctahedra was found to shorten
from 3.12 (Cr) to 2.41 ' (W), indicating the presence of substantial

metal-metal bonding in the latter case. Therefore a comparison of

- 3
CsaerI9 with Cs3Y219, whgre the M

tion, respectively, was of interest and will be considered.

+ ions have a 4dl and 4do configura-
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DATA COLLECTION

All reflection data within a sbhere defined by 26 < 60° in the HKL,
HKL and HKL octants were measured. The 3826 observed reflections (I >
30(1I)) were corrected for iorentz-polarization effects and averaged to
623 indepéndenf reflectioné. The extinction hh2h with & odd was
observed-from which the trigonal space group P31lc was assumed. This
was later converted to the hexagonal space group P63/mmc when the -

positional parameters were observed to have:the higher symmetry.
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STRUCTURE DETERMINATION

One iodine and the zirconium position were obtained from a Patterson
map and the remaining atom positions were located from a Fourier synthe-
sis map. After full-matrix least-squares refinement of positional and
isotropic thermal parameters R was 0.15. Refinement with anisotropic
thermal parameters lowered this to a R = 0.085 and R.w = 0.158. The
diffraction data were then rewelghted in gfoups sorted on Fo to give
final residuals R = 0.083 and Rw = 0.075, where the shift/error values
were < 0.001 for all parameters. A Fourier difference map computed at

this point was flat to < + 2e/R3 at the atoms and i_i:le/gs elsewhere.

|
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DESCRIPTION OF THE STRUCTURE

The compound Csazer9 crystallizes in space group P63/mmc with two
formula units per cell and is isotypic with CsBCrZCIL9 (55). Fiqal
'positional and thermal parameters are'givep in Table V. Distances and
angles are listed in Table Vi while the observed and calculated structure
factors are availéble in Appendix D. lThe lattice constants determined
from least-squarés refinement of tuned 29'va1ues from the data crystal
- are a = 8;269(1), c= 19.908(3) &, c/a = 2.408, and the molar volume is
335.0 cm°. |
| In thié structure, layers of close-pagking atoms' of the composi-

tion CsIq4 are stacked in the ¢ lattice direction with relative ordering’
ABACBC or, alternatively, (ghg)z. Two-thirds of the octahedral inte;sti-

3+ in pairs so that a confacial bioctahedron

cies are filled with M
Zrélgs- is formed, as shown in Figure 7. The structure is closely
related to that of hexagonal BaTi0, (59) or CsCdC, (60); in the latter
;all octahedral sites between CsC232— layers stacked in'ﬁhe_same manner
are occupied by Cd2+ to generate zig-zag chains of CdC,?,6 octahedra in
_'thch single octahedra shafe corners with confacial bioctahedra. In
the Cs3Cr2029-type defect structure the single octahedral sites are

left vacant.



Table V. Crystallographic data and atom parameters for Cs3Zr219;

Composition: Cs3Zr219, Z=2
Cell: hexagonal, P63/mmc (No.
Lattice .parameters: a = 8.269(1) g, c = 19.908(3) )4

Refinement: R = 0.087, Rw = 0.075 (623 reflections, 26 < 60°)

[4°)

Wyckoff a

Atom  Notation X y z By By B33 By3
Csl 4E 13 2/3  0.0699(1) 4.28(6) By, 2.78(7) o
Cs2 2b 0 0 1/4 3.60(7) B, 2.76(9) 0
zZr 4f 2/3 1/3  0.17128(9) 1.97(5) B,y 1.45(6) 0
11 12k 0.83187(8) 2x 0.08987 (4) 3.82(4) 2.36(4) 2.46(4) . 0.71(3)
12 6h' 0.4949(1)  2x 1/4 4.36(6) 2.75(6) 2.50(5) O

a,, _ =1 2 %2 2. %2 2 %2 *_ % * % * %

T = expl4 (Bllh a + B22k b o+ B332. c + ZB].tha b + 2B13h£a c + 2323k2b c )]

312 = 322/2; B /2.

13 ~ B23
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Table VI. Bond Distances (X) and Angles (deg.) in CsBZrZI9 and Cs3 ng.a

Cs, Z2r, 1 Cs, Y, I

329 , 37279
3.134(4) Mc-Mc 4.052(9)
2.828(1) Mc-T1A 2.901(2)
2.917(1) Mc-~I2B 3.126(3)
4.098 (1) I1A-T1A 4.108(1)
4.313(1) T1A-11C 4.298(1)
3.999(1) I1A-12B 4.285(3)
4.008(1) 12B-12B 4.122(1)
4.154 (1) CslA-T1A 4.212(1)
3.964(3) Cs1A-T1C 4.140(4)
4.268(3) Cs1A~I2B 4.533(4)
4.135(1) Cs2B-12B 4.203(1)
3.995(1) Cs2B-T1A 4.251(2)

91.21(5) I1A-Mc-I1A 95.6(1)
87.47(3) I1A-Mc-12B | © 90.58(3)
93.84 (5) I2B-Mc~12B(a) 82.52(9)

64.99(6) | Mc-12B-Mc (8) 80.8(1)

81talicized letters refer to the different layers in the stacking

sequence: [JAcBcA[JCaBaC[]---(a, c: M; A, B, C: CsI,-layers).
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Figure 7. Perspective views of the Y2193" (left) and Zr2193- (right) groups in their
Cs3MpIg salts. Drawn with the same linear scale, view distance and 50%
probability thermal ellipsoids.
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DISCUSSION

; The diffgrences in configuration between_CsBZrZI9 and CSBYZIQ (61)
are very dfamatic and can easily be seen in Figure 7. These are ascribed

‘enfirely to the formation of a zirconium-zirconium bond in the forﬁer
through overlap of two dzzl orbitals through the shared face. This
feature is reflected in many differences in the two structures even
though they are formally isotypic. For example, the lattice constants
themselves would ordinarily show a small aﬁd more or less uniform in-
crease with dgcreasing~atomi; number in such a homologous series, but
tﬁe 6.47 expansion in the c axis, 19.908 1 (Zr) to 21.280 & (Y), par-

,

. aliel to the principal axis.of the M2X9 bioctahedron on transition from
zirconium to yttrium versus only a 1.6% increase in a, 8.269 & (Zr) to
8.406 s (Y), within the layers is noteworthy. Similar increases in

‘molér volume (9.5%) and ﬁhe c/a ratio (4.9%) are also diagnostic of the
change in bonding (52). The marked differences of these compounds are
also garried dvér to a macroscopic scale where the_zirconium compound
forms black érystals which grind to yield a dark green powder, while

- the yttrium compound is found as clear crystals. This is consistent
with the metal-metal bonding in zirconium and the lack of the éame in
yttrium.

However, the most direct evidence for the change in bonding is

| alsé the mogt striking, a lengthening of the metal—metal distancekacross

the'sharea facé from 3.134(4) & (Zr) to 4.052(9) & (Y), a 22.6% increase.

Such a large change naturally affects not only other distances and
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angles in the M2193- bioctahedron but also positions of neighboring
atomé as well. Internal angles defined by the metal atoms and I2 atoms
in the shared face are affected most, a 15.8° increase from 65.0 to
80.8° in the angle B at the bridging iodine (M-I2-M) and an 11.3°
decrease from 93.8 to 82.5° in the internal angle o at the metal
(12-M-12) (see Figure 7). Small changes also occcur in the external
angles to atoms Il and in the M-I distances.

In one sense the magnitude of ‘the contraction in the M-M distances
seems very remarkable since it is 0.2 ] greater than that accompanying
the transition from the paramagnetic CsBCrzcz9 to the diamagnetic K3wzczg
and the formation of a triple bond. On the other hand the percentage
decrease is nearly the same. But further interpretation and comparison
with the latter series becomes complex owing to substantial changes in
both halide and metal bonding radii let alone because of any restraints
provided by the close packed MIX3 matrix.

A more complete and indepth look at the comparison of these two

compounds can be found in a recent publication (61).
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THE SYNTHESIS AND CHARACTERIZATION OF THE
FIRST TERNARY ZIRCONIUM IODIDE CLUSTER

CsZrGI14
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INTRODUCTION

Ternary cluster species have been known for sometime, examples
teing Zn,Mo,0g (49), CsNb, X, ; (X = C1, Br) (62), K 4 Nb Cl18 (63), and
Mg3Nb6011 (64). Until 1971 few other examples were known, then the
discovery of the remarkable'superconductivity properties of the Chervel
| phases (65) caused this list to literally explode with different combina-
tions of the M'Mo X (X =8, Se, Te) formula. In addition to the Chervel
phases other ternary clusters have recently been synthesized such as
NaI{'Ipéo6 (66), CsNb6I11 (67) and now CsZr6114.

In the CsI-Z r-ZrIa ternary system no other cluster compounds are
known to date and no other M' M X 14 phases have been reported. However,
the analogous binary clusters Nb60114 (68) and Ta6I14 (69) are known.

The structural aspects of CsZr,I,, as well as its supposed hydride,
.CsZr6114H R will be discussed. In additiomn, a comparisdn of these
ternary M' M6 14 clusters‘will be made with the closely related binary

M6xl4 clusters.
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DATA COLLECTION

Data were collectedvon two different crystels (see the Discussion
section). Data on crystal 1l were originally collected on a nonstandard
. monoclinic eell having a = 4.086(2), b = 3.973(2), c = 12.962(3) R and
Y = 119.1(4)°. The space group P21/m was originally chosen (c unique)
since fhe extinction OOi'(Z,# 2n) was observed and a centric cell was
predicted by an HPR plot. Because of the shortness of the a and b
axes an iodiﬁe atom was placed at the origin.

The location of a second iodine in a Fourier electron density map
'indicafed en'ecentric rather tﬁan a centric cellland therefore the
space group é21‘was selected and 1east-squares refinement of the two
iodines resulted in an R equal to 0.21. The iodines were now observed
to etack,in aﬁ ABAC sequence along the long c axis. Refinement of any
possible zirconium positions increased R and it was therefore presumed
that tﬁis cell wae probably a subcell corresponding only to the iodine

. atdms which have the greater diffracting powef. Reexamination of the
': ihdexing step revealed extra weak spofs in the b axial photo which

' woeid increase b by a fector of four. When these new reflections were
input along ﬁith the original set of reflections and reindexed, a new
cell was obtained. Two octants of data,vHKL and HKL, were collected
(26 < 60°) on the new orthorhombic cell with é.= 14.275(4), b = 15.880(4)
and ¢ = 12.953(4) %, which were obtained via LATT by tuning on the 20
values of 14 reflectiohs (28 < 26 < 34°). After 1300 reflections had

been checked, the C~centering restriction, h +k # 2n, was established
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and added. The 3208 observed reflections were reduced and averaged

in Laue symmetry mmm yielding 1640 independent reflections. Initially
the space group €222 was used; this was later replaced with the correct
space group Ccmb upon the discove:y of the extinctions Ok (% # 2n)

and hkO (k # 2n). Ccmb is é nonstandard setting of Cmca (No. 64).

All data in the octants HKL and HKL were collected (26 < 50°) on
crystal 2. This second orthorhombic cell had a = 14.300(3), b = 15.833(2)
and ¢ = 12.951(2) X, again obtained via LATT by tuning on the 26 values
of 14 reflections (28 < 26 < 47°). The 2263 observed reflections were
reduced and averaged the same as crystal 1 yielding 1169 independent

reflections.
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STRUCTURE DETERMINATION

A value for R of 0.21 had been obtained from the refinement of two
iodine atoms in the old (0) monoclinic cell for crystal 1. When the

neﬁ (M) 6rthorhombic cell was found, an examination of the orientation

% *
- matrices for the two cells, see Table VII, indicated that gb and 2& were

the same except opposite in direction. Since Bo.iS the only non-90°

‘ : * * % * * *
ang;e, the angles between s and ays ¢, and b0 as well as FN and ays

* and b all be 90°. Theref X bY. a¥ and bF all lie in th
¢y and by all must be . erefore, ag, by, ay and by a e in the

N
% *
same plane since o and N differ only in direction. By using the

. | . .
equation e:f = |e||f| cos 8, the angles between a, and ay as well as

*
0

Therefore following the rules for converting feciprocal axes to real

% * '
a, and bN were determined and found to be 0° and 90°, respectively.

- axes, bo and bN_were found to lie in the same direction; however, they
. had different magnitudes. In the same manner a, was found to be per-

.pendicular tp both ¢,, and bN but not to lié along ag. From this

N
corielation‘between the old and new cells, sig independent iodinés were
.refined in.thé new orthorhbmb;c cell (data se£ 1) and the.zirconiuml
‘positioné ldcéted. Refinement of the six iodines and two zirconiums

- yielded an R equal to 0.25. At this point ex;mination of the atom
1§cation§ indicated, via chemical common sense, that one of the.supposed
viodines-was trﬁly a cesium. This was drawﬁ from the fact that a.cesium
cbmpletely surrouﬁded by iodines is more reasonable than an iodine in

the same position. Further refinement yielded a residual equal to 0.12

using isotropic temperature factors.
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orthorhombic cells.

Orientation matrices for the old monoclinic and new

LA

29

-0.1596
0.15763

0.16140

*

2N

~-0.04160
0.039194

0.040274

'Old Monoclinic

0.028915
0.28666

-0.00704

New Orthorhombic

*
bN

0.027974
0.051958

-0.021606

0.05178
-0.00383

0.05722

*

°N

-0.051524
0.003892

-0.057125
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After the data sets from crystals 1 and 2 were corrected for
absorption via a ¢-scan program (70) and reweighted in fifty groups
sorted on Fo’ final R's and Rw's with anisotropic temperature factors
were R = 0.090, 0.062 and Rw = 0.110, 0.083, respectively. The struc-
ture of crystal 2 was refined with the atom positions from crystal 1.

The final difference map for crystal 1 was flat to 5}e/83, while the
same for crystal 2 had +2 and +3e/X3 at the cesium and iodine positions,
respectively, and i;e/XB elsewhere. Howéver, both clusters were observed

to have a peak of wSe/x3 in the center of the zirconium cluster.
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DESCRIPTION OF THE STRUCTURE

" Final positional, thermal parameters and cell constants for

.CSZr crystal 1l and 2 are listed in Table VIII, and important

6 14
distances and angles in Table IX, while structure factors are in

Appendix E.
Both Zr6112 and'Zr6I14 are based on M6X12 clusters and a compari-
son of Figures 3 and 8 will show that they differ only in how the

iodine atoms are shared between clusters. The exact sharing of ilodines

' : i i-a .a-1 - .
in Zr6112, as stated earlier, is Zr6I6 I6 2/316 1/3 while in Zr6 14 it is

I i i-a I a-1i i a-a
611012.2/3 21/34 $172°

,coding of the iodines. The ten solid iodine atoms are inner (i) iodines

Zr The latter can be seen in Figure 8 by the
'bonoed twice, only to the cluster shown. The two striped iodine atoms
are bonded twice to the clueter shown but also once to neighboring
clusters and are inner-outer. (i-a) lodines. The two spofted iodine

atoms bond once to the cluster shown and twice to neighboring clusters
and are outer-inner (a-1) lodines, and finally the four open lodine atoms
bond once to the cluster shown and once to neighboring clusters and are
outer-outer (a4a) iodines. -As seen in Zr6I12 the Zr-I bond lengths in
CsZrGI14 follow this bonding scheme where the Zr-Ii, Zr-I s 2r-1 A
and_Zr—I ,; distances increase from 2.862-2.865, 2.923, 3.148 to 3.408 X,.

respectively,



Table VIII. Crystallogréphic data for CsZr6114, crystals 1 and 2.

Composition:

CsZr

H

6114 x®
Cell: Orthorhombic, Ccmb (nonstandard setting No.. 64)

CsZr6114,

Z =4

(1) 2) A
Lattice Parameters: a = 14.275(4), a = 14.300(3) .025(5)
b = 15.880(4), b = 15.833(2) -.047(5)
c = 12.953(4), c = 12.951(2) -.002(5)
R = 0.090 R = 0.062
R = 0.110 R_= 0.083
W W
1640 reflections, 1169 reflections,
26 < 59.9° 20 < 49.9°
B,. 2 B B B B B
X y z- 11 22 33 12 13 23
Crystal 1, CsZr6 14}1x
I1 0.09821(8) 0.12549(7) 0.7509(1) 1.40(5) 1.56(5) 1.21(4) 0.11(3) -0.031(3) 0.39(3)
12 0.25619(8) 0.12574(7) 0.9936(1) 1.26(4) 1.65(5) 1.28(5) 0.32(3) - 0.20(3) 0.29(3)
I3 0.6530(1) 0.25 0.25 1.53(6) 1.51(6) 1.39(6) 0.0 0.0 -0.40(4)
I4 0.1591(1) 0.0 0.2377(1) 1.53(6) 1.23(6) 1.22(6) 0.0 0.38(4) 0.0
I5 0.0 0.247(1) 0.0 . 1.80(6) 1.17(5) 1.21(6) 0.0 ~0.27(5) 0.0
cs 0.0 0.0 0.0 5.6(2)  3.9(2) 3.2(2) 0.0 ~0.5(1) 0.0



Zrl  0.0660(1).

1.64(6)

-0.3920(1) 0.1101(1) 1.20(6) 1.08(6) -0.22(5) 0.27(5) -0.23(5)
Zr2  0.3631(2) . 0.0. 0.1009(2) 1.78(9) ;.13(8) ¥.2;(9) 0.0' ~0.44(7) 0.0
Crystal 2, CsZr6I14
I1 0.08991(9) 0.12535(6) 0.74989(8) 1.51(6) 1.34(6) 1.30(6) 0.10(3) ~0.27(3) -0.41(3)
- I2 0.25726(7) 0.12574(6) 0.99357(8) 1.26(5) 1.40(6) 1.38(5) 0.32(3) 0.17(3) 0.28(3)
I3 0.6512(1) 0.25 0.25 1.54(7) 1.24(7) 1.62(6) 0.0 0.0 -0.40(4)
T4 0.1581(1) 0.0 0.2382(1) 1.69(7) 1.10(7) 1.31(6) 0.0 0.39(4) 0.0
15 0.0 0.24730(8) 0.0 1.92(7) 0.84(6) 1.40(6) 0.0 -0.28(5) 0.0
Cs 0.0 0.0 0.0 4.9(2) 3.4(1) 3.0(1) 0.0 -0.4(1) 0.0
Zrl 0.0643(1) 0.39420(9) 0.1078(1) 1.17(6) _6.99(6) 1.05(6) -0.08(4) 0.06(4) -0.09(4)
Zf2 0.3668(1) 0.0 0.0979(1) 1.29(8) 1.29(8) 1.13(7) 0.0 -0.19(6) 0.0
a, _ _ 2 %2 2. %2 2 %2 *_ % : * % * %
T'— expl ( 1/4(Bllh a =+ 322k b °+ B33z c T+ ZBlzhka b + 2Bl3h2a c + 2B23k2b F )1.

9L
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Table IX. Selected bond distances (X) and angles (deg.)

2 4x, Yty, 2 b %,%.2 “Xyz s, %, 2
e f, 1 g =
X, %y, %~z Lb-x, 4ty, Mtz x, Mty, Mtz
Distances
CsZr6IMHx CsZr6I14
(Crystal 1) (Crystal 2)
Zr-Zr intralayer »
zr1? - zr1© 3.430(4) 3.350(3)
Zrl - zr2? : 3.368(3) 3.286(2)
Zr-Zr interlayer
zrl - zr1€ 3.418(4) 3.343(3)
zrl - zr2d 3.382(3) 3.298(2)
zrl - zr1P 4.842(4) 4.733(3)
2r2® - zr2d 4.704(2) 4.577(4)
VA o -'Ii
7rl - I5 2.862(2) 2.864(2)
zr1® - 11 2.883(2) 2.888(2)
zr1P - 128 2.886(2) 2.887(2)
zr2d - 11® 2.866(2) 2.863(2)

zr2® - 122 2.872(2) 2.871(2)
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Table IX (cont.)

Zr

©2r

r

Zr

Ii—a

7rl® - 148
.Ia-i

Zer - I4d
1278

zr1P - 13f
1272 _ 7y

Zr

zr1® - 13f -z

(adjacent cluster)

Ii - 7r

Zr

zrl - 15 - zr1€

zrl® - 11° - Zr2d
zr1® - 122 - zr2®

i-a

I - 2r

Zrlb

148 - 7r1®

Distances

CsZr6Il4Hx

(Crystal 1)

CsZr6Il4

(Crystal 2)

2.932(2) 2,930 (2)

3.409(3) 3.494(3)

3.149(2) 3.186(2)

Angles

133.48(9) 134.08(7)
73.32(8) 71.41(6)
71.73(7) 69.68(5)
71.95(7) 69.88(5)
71.62(8) 69.74(6)




Figure 8.
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The Zr6114- cluster (crystal 2) with the zirconium atoms
connected by heavy lines. There 1s an inversion center at
the center of the cluster and a mirror plane garallel to the
paper which contains zirconium atoms 28 and 29 and iodine
atoms 49 and 48. The iodine atoms are coded according to
their bonding between clusters: solid are inner (1), striped
are inner-outer (i-a), dotted are outer-inner (a-i) and open
are outer-outer (a-a). The letters in atom identification

refer to symmetry operations, Table IX.
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DISCUSSION

'Thé.Zr-Zr distances were expected to increase upon going from Zr6I12
(12"e/Zr6) to‘Zr6114- (11e/ﬁ6) since there are fewer electrons for metal-
metal bonding. However, the obsérved increase from 3.194 - 3.204 & in
ZrGI12 to 3.368 - 3.430 R in Zr6Ii4-, crystal 1, was much larger than
expected. This is especially evident when compared with a somewhat
énélogOus transiﬁion from CsNb6I11 (20 e/M6) (67) to Nb6Ill (19 e/M6) (71)
"where the average Nﬁ-Nb distance increases a mere 0.025 R from 2.825(2)
’to 2.850(3) R...Therefore, to verify the long Zr-Zr diétances in crystal
1, data were Eolledted on a‘second crystal.. Several differénces between
crystal 1 and 2 were found but the most striking was that the Zr-Zr disf
ténces were &0.08 i1 longer in crystal 1 than in 2, 3.368 - 3.430 and
3,286 - 3.356 X, respectively. The longer metal distances in crystal 1
are presumed to be indirect evidence for the presencelof hydrogen in

crystél 1 (CszZr H ) relative to érystal 2 (CsZr6114). Crystal 1 was

6114 .
‘obtained from a reaction of CsI, ZrI4 and metal powder while crystal 2

came from a éimilar reaction except metal strips were used. The powdered

metal was obtained via the metal hydride,‘&ZrH , made at n450°C from

1.4
the .direct reaction of hydrogen and metal. The brittle hydride was then
ground into a powder and deéomposed under a dynamic‘éacuum (<10_4 Torr)
at'800°C; the H:Zr atomic ratio should be <0.01 (72).

In NbGIllD the deuterium.is known, via a neutron study (73), to lie
in the middle of the niobium cluster. Therefore, in the similar clusters

CsNﬁﬁlllH (74) and now CsZr6114Hx the hydrogen is presumed to ocgupy a
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similar position. The threg systems Nb6Ill-Nb6111H, CsNb6Ill-CsNb6111H

and CsZr, I,,-CsZr,I.,H_ show similar trends. All three show increases
6714 6714 x

in the unit cell volumes, though quite small, of 0.2, 0.3 and 0.1%,

respectively, with the uptake of hydrogen. In addition, the M-M distances

in the latter two also increase with the uptake of hydrogen. In CsNb6I11

(67) to CsNb H (72), the Nb-Nb distances increase from 2.77(2),

6111
2.795(2) and 2.940(2) to 2.817(2), 2.828(2) and 2.971(2) R, amounting
to 1.2, 1.1 and 1.7% incréases. The increases in the Zr-Zr diétances on
going from CsZr6I14 to CsZr6114Hx are approximately twice as large,
3.286(2), 3.298(2), 3.343(3) and 3.350(3) to 3.368(3), 3.382(3), 3.418(4)
and 3.430(4) & which are 2,4, 2.5, 2.2 and 2.3% increases. The larger
increases in the M-M distances in the case of the zirconium cluster can
be attributed, at least in part, to the fact that the electron presumably
removed by H 1s somewhat more bonding than in the niobium éluster, since
the zirconium cluster contalns only eleven electrons while the niobium
cluster contains twenty electrons.

Since CsZr6I14 contains an odd number of electrons per cluster
(11 e/Zr6) it presumably will be paramagnetic with at least one unpaired
electron. Because only small quantities of this phase have been obtained
esr measurements were carried éut on two single érystals. " The crystals
were conservatively estimated as 0.1 mm cuBes which corresponds to mlO15
spins/crystal. A Bruker (ER 220 PSR) spectrometer interfaced with a
Nicolet 1170 signal averager were used to make measurements at both room
11

and liquid nitrogen temperatures. A conservative estimate was that 10

spins or more should be detectable. However, no signal was observed
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evén at liquid nitrogen.températures. The exact reason as to why a
signal was not seen is not known, but it may be that this phase has a
fast relaxation causing a broad signal so that even lower temperatures
are required qu detection; At the same time it may also be that the

' oriéntations of the single crystals produces a broad and perhaps aniso-
tropic signal. 1In any case, when larger quantities of this phase are
obtained, esr measurements should be repeated.

This Zr cluster is not the only M6X14 cluster known, there are

6T14
tﬁq binary apalogs, Nb60214 (68) and Ta6114(69). All three crystallize
in the same space group Cmcé (No. 64). . However, Zr6114n was solved in ,
Ccmﬁ while Ehe niobium and tantalum clusters were solved in Bbam. If

b and ¢ are'interchanged in the niobium and'tantalum structures and the
origin shifted by % % %, these structures may be compared directly.
Figgre‘S shows a 110 projection of the CsZr6I14 structure at c approxi-
mately equal to . The iodines (Ii) about the waist of the clusters lie
at s_approximately qual to % while metal triangles lie just above and

' below. The significance of this prdjectioﬁ is that the cesium cation
.vlieé at % 0 k‘and 0% %.‘ This position is vacant in the Nb6C!Z,14 and
~Ta6114 comp0un&s and was not recognized by the earlier workers. It
certainly seems feasible that the hole in the binary compounds could be
filled with a cation, e.g. cesium, rubidium or potassium, thereby reduc~
ing thé clusters. In addition, the cesium in CsZrGIla_or the hole in

the binary clusters might also be replaced with a barium or lanthanum

cation to reduce the clusters even further (see FUTURE WORK).



83

Figure 9. A (001) section of the CsZr.I;,; structure (crystal 2) at
c & %. Only the (inner) ilodines which lie about the waist
of a metal cluster are shown. The cesium atoms at %00 and
0%0 lie within an octahedron of metal clusters.
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FUTURE WORK
Concluding Remarks
This investigation has had at least a two~fold significance: the
development of general information on transition metal halide chemistry
and the conéideration as to whether any of the new compounds found might
haﬁe a bearing on SCC of zircaloy. The firét.has been achieved with the
synthesis.énd characterization of the new compounds mentioned in theA
.v foregoing sections. The second is in many'wa§s difficult since the
;esearch was directed more along the lines of chemical synthesis and
characferizétion of new compounds rather than metallurgical correlatiohs
of these new éompoundé‘to SCC. However, some. general comments can be
' made. |
First.éf all, it is now considered fact that SCC of zircaloy is
caused by a zirconium iodide. The question then is, which zirconium
iodide? A ZrCl or ZrBr type would seem to be the prime candidate, mainiy
because of its easy basal cleavage (75). . Unfortunately no such zirconium
iodide has been positively identified. However, a zirconium monoiodide,
‘of unknown structure, has feportedly been obtained from the dispropor-
tionation of g more oxidized phase, Zr12.4, ip a 425-140°C gradient (76).

A product analyzed as ZfI remained in the 425°C region while ZrI4

1.240.1
) Wag,deposited in the 140°C zone; an x-ray powder pattern for this phase
has also been reported which does not correspond to the metal or any

known binary phase. In any case, the next best candidate, at this time,

‘would seem to- be oz-ZrI2 which also has a layered structure with easy

basal cleavage. Along these lines a study has been suggested which would



85

use.single crystals of zirconium to grow ZrCl, ZrBr and a-ZrI2
epitaxially. The results are hoped to lend support to a theory (75)
that such phases may indeed be involved in SCC of zircaloy.
| Secondly, although the required conditions (temperature, pressure

of iodine, required stress, etc.) needed for iodine-induced SCC have
been identified, no one has tried to isolate these phases. If contact
with air and moisture could be avoided, studies such as SEM, XPS, and x~
ray powder diffraction could be very informative especially in light of
the new phases reported in this work.

Finaliy; though some work has been done to learn whether cesium may
influence 'SCC more work may be needed, esﬁecially since zirconium
strips have been observed to become brittle in some cesium ternary
; reactions abbve 900°C; this has never been observed in binary iodide
reactions.

Binarz‘work. .Perhaps the most frustrating aspects of this work have
" . been the‘lack of larger quantities of sevefal of the new phases and the
fact that a zirconium iodide more reduced than ZrI2 has not been féund,
especially since ZrCl (17) and ZrBr (26) are well known. One reason for
this may be that too much "heat and beat" chemistry has been done in

the past. Recent work in the La-LaCl, system (77) has shown that at

3
relatively low temperatures (750-815°C) solid-solid reactions are a
practical way to obtain reduced phases such as LaCl in very large (~v100%)
yields. Earlier such phases had only been obtained at higher Eempera—

tures. Therefore perhaps more work should be done between 700-850°C

with either powdered metal or very large (10-20 g) quantities of metal
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strips. The large quantities of metal afé needed to overcome blockage
of the surface which appears to prevent complete reaction.
if larger quantities of oc-ZrI2 andls—Zrlé could be obtained,

studies such as XPS-UPS measurements along with other interesting chem-
isﬁry could be done. It has been suggested'that B-Zr12 might be soluble
in a solvent such as pyridine or acetonitrile. If true, the solution
waﬁld presumably contain discrete ZrGI12 clusters with solvent molecules
most likely occupying the exo-positions about the clusters. If.indeed
the cluster were retained in solution, they perhaps could.be reduced and
isolated as a cation-anion pair, e.é., M+Zr6112-. Likewise, if this
we;e possibie with the binary cluster it may also be possible with the
J téfnary cluster CsZr6Ila, which would allow reduction in solution rather
than in the solid state (see future térnary work section). in addition,
lafger quantities of B-ZrI2 Would allow hydrogen absorption studies.
The analogo;s Zr60112 and Zr6Br12 clusterS'(Zl) are known;not to take-up
hy&rogen yet'CsZr6I14 is thought to form CsZr6Il4Hx.

| Larger quantities of u—ZrI2 would allow an invgstigation into the
transition from a distorteq CdIz-type structure (a-ZrIZ) to an undis-
torted or normal CdI2 structure. Such a transition for o-Zrl, has been
proven to be theoretically possible via a Landau second order phase
transition (38,78). An experimental verification of this transition
would,.as has other work (39), lend support for studies into other
systems where chemistry might first be predicted by theory priér to

laboratory experiments.
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An orthorhombic phase is now known to be involved in a twinning
mechanism with a-ZrI2 (see‘ZrIl_8 RESULTS). Crystals of this phase
were seen in reactions 21 and 35 (19), with a pseudo single crystal
mouqted from the first. In both reactions 0.5 g of ZrI4 and a long
metal strip (v13 cm, weighing n2.5 g) were heated in an m850-950°C
grédient. The blade crystals, often observed to be forked at one or
both ends (dﬁe to twinning), were obtained in only small quantities in
' fhe hot.end of the tube. Future attempts to produce larger &iglds of
this.phase should use lafger quantities of metal and/br'smaller gradients
(900-950°C) with 1;2 month reaction times to allow larger crystals to
form. |
- Work in this binary system has lacked in the fact that surface-
sensitive techniques héve not Been employed in an attemét to identify
phases which,may exist in ﬁgrhaps only a few ménolayers.” Techniques such
; as SEM, UPS-XPS, Auger and microprobe shoqld be very heléful, especially

in identification of zirconium iodides which might be important in the

" scC of zircaloy.

Ternary &ork. A question which comes to mind 1s "why are extended

chain structures'guch as Y4Cl6 (79), ScSCl8 (27), Sc7Cl10 (80), etc.,

~so prevalent just .to the left of group IV and isolated clusters such as

Nb318 (81) and Nb6

zirconium?" (excluding Zr6X12 (20,21) and ZrX (17,26)). One explanation

I11 (71) just to the right, yet neither are known for

may‘be that the correct M/X ratio has not or éanndt be obtained in the
binary. However, in light of all the work done in the Zr—Zr014, Zr-ZrBr4

and Zr—ZrI4 systems, it seems somewhat hard to believe that at least one
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of these three doesn't have the correct M/X ratio. Therefore, perhaps
the problem lies in electron count rather than M/X ratio. One such
example is CsZr6114. The‘MGX14 structure is known for‘the binary com-
pognds Nb6Cl14 (68) and TaﬁI14 (69), yet_no suchbbinary zirconium

ha;ide cluster is known. However, when one extra electron is added to
the system CsZrGI14 is formed. Therefore, perhaps a whole host of new
ternary zirconium halides hould be synthesized, e.g., MZr6X12, MZZr3X8,
MZr6X14, MZr4X6, MZrSXlG, etc. (where M = Na, K, Cs, Ba,}La, etc.), if
the correct electron counf'can be achieved. Then if these new compounds
could be méde, attempts to vary the number of electrons.c§u1d be carried
j out, e.g., CsZr6114, BaZrﬁI14 and LaZr6Il4, 1f the propose& structure%
are studied some general observations can be made. In order to make

: M22r3X8 (Zn'2M030-8 (49)) or MZr6X12 (Sc701]'_2 (20)); M must Be small enough
to fit in between the halide layers in octahedral and/or tétgahedral
"holes; therefore Na or k would be a good choice. In contrast in MZrAX6
(NaMo406 (66)) and MZr8X16 (Bal.13M°8016 (82)5, M would lie in channels
through the'étructure and the size may not be as critical. In MZr6X14
the hole is ﬁithin the halide layer and therefore the best M would be
one approximately the same size as X. From this point of view and in .
regognition of the recently discovered compounds CsNb6Ill w67, CsZr6114,

NaMo406 (66) and Ba M08016 (82), the outlook for ternary zirconium

1.13
halides as well as general ternary compounds seems extremely promising.
In fact, one might go as far as to say a proverbial goldmine of new and

very interésting ternary compounds awaits discovery.
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The fur or hair-like crystal morphology of the unidentified
ternary phase "Q" suggests a chain structure such a.s“NaMol’O6 (66)—or“
Ba1.16M°8016 (81). At the same time this phase does not have to be
ternary but could be a binary compound such as Y4016 (79), Sc5C18 27)
or Sc7CI10 (80). 1In any case the identification of phase "Q" may pro-
vide the first known extended chain structure for a zirconium halide.
The best crysﬁals were found growing on the metal in a 900-925°C gradient

in reaction Csl8 (19) where the ZrI,:CsI:Zr molar ratio was 3:1:100.

4
The same conditions with larger quantities of metal (6-10 g) may produce
larger quantities. Since the cesium content is not known it's not possi-
ble to say whether the Zr14:CsI ratio should be greater than or less
than 3:1.

In this ternary system only one phase has not been seen which might

be expected, CsZrl, with either the CsNiCl3 (83) or CsMnF3 (84) type

3
structure. This compound would have a +2 zirconium and would complete
the series Cs,zrl., CsyZr,I,, CsZrl, where 1/2, 2/3 and all the ocfa-
hedra holes are filled, respectively. The most reasonable attemp; to
obtain this phase would seem to be the reduction of either C322r16 or
Csszrzl9 since attgmpts to react CsI and ZrI4 with the metal have failed.
In addition to completing the above mentioned series CsZrI3 would also
be the most reduced ternary phase known, since CsZr6I14 contains a
zirconium in the oxidation state +2.16. It is noteworthy that although
CsBYzI9 1s known (61), the analogous CsYI
synthesized‘(SS).

3 compound has also not been
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Finally, as in the binary system larger quantities of some of the
ternary phases are desired, especially CsZr6114. Again, as in the
binary system the best attempt would probably be a reaction of ZrI4 and
CsI (in an ~3:1 ratio) with very large, 10-20 g, quantities of metal so
as to overcome problems assoclated with blockage of the surface. Larger
quantities of this phasg would allow the measurement of its magnetic
susceptibility as well as better esr measurements. Most important,
studies could be done‘on hydrogen uptake which would ailow nmr studies

of the presumed hydride CsZr6114Hx.
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APPENDIX A.
OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (X10) FOR a—Zr12
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APPENDIX B.

OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (X10) FOR B-Zr12
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APPENDIX C.
THE CALCULATED AND OBSERVED GUINIER

POWDER DIFFRACTION PATTERNS FOR CSZZrIG



106

A Guinier powder pattern of CSZZrI6 was measured by means of a mm
scale placed oﬁ and developed with the film. Four NBS Si lines along
with the zero line were refined to yield 20 standard deﬁiations of 0.002.
hkf and 26 values for eleven of the strongest lines weré refined in LATT
to give, with a cubic restriction, a = 11.659(2) 2.

The AZMX6 compounds of the type Kthcz6 (14) crystallize in the
cubic space group Fm3m with Z = 4; the cations and metals lie on the
special position 1/4, 1/4, 1/4 and 0,0,0, respectively, while the halide
is at x%,0,0. The parameter x was approximated from the average of'éhe V

Zr~1 distances (2.87 and 2.92 X) in Cs ZrZI9 (2.895 X). Using a = 11.659

3
R and x = 0.246, the powder on the following page was calculated. The

observed powder agrees quite well in both intensity and 26 verifying that

Cs,2rl

9ZrIe is isotypic with K

2PtCR,6 as well as CSZZrC£6.
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Calculated and observed Guinier powder patterns for CsZZrI6

1 2
bk 26obs. 26calc. Iobs; Icalc'
111 13.22° 13.14 1 0.7
200 15.263 15.19 1/2 0.3
220 21.56° 21.54 1/2 0.3
311 25.31 0.3
222 . 26.50° 26.46 10 10
400 30.69° 30.65 8 7.3
333 40.20° 40.15 1/2 0
440 43.80° 43.89 6 5
622 52.01° 51.98 4 4
444 54.53° 54.48 2 1.6
800 63.86 63.81 1/2 0.7
662 70.38 70.33 1/2 1.4
840 | 72.453 72.44 1/2 1.8

3

844 80.66 80.68 1/2 1.3

1
Standard deviations of 26 values are *0.02.

2
All 26 with I > 0.3/10 are listed.

calc.

3Eleven lines used in LATT.
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APPENDIX D.
OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (X10) FOR Cs.Zr,I

37279
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APPENDIX E.
OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (X10) FOR CSZrGI14 (CRYSTALS 1 AND 2)
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