IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1981

The synthesis and characterization of some binary and ternary zirconium iodides

Dennis Hugh Guthrie Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons

Recommended Citation

Guthrie, Dennis Hugh, "The synthesis and characterization of some binary and ternary zirconium iodides " (1981). *Retrospective Theses and Dissertations*. 6911. https://lib.dr.iastate.edu/rtd/6911

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
- 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
- 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International

300 N. ZEEB RD., ANN ARBOR, MI 48106

8128822

GUTHRIE, DENNIS HUGH

THE SYNTHESIS AND CHARACTERIZATION OF SOME BINARY AND TERNARY ZIRCONIUM IODIDES

Iowa State University

Рн.Д. 1981

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

- 1. Glossy photographs or pages _____
- 2. Colored illustrations, paper or print _____
- 3. Photographs with dark background
- 4. Illustrations are poor copy _____
- 5. Pages with black marks, not original copy_____
- 6. Print shows through as there is text on both sides of page____
- 7. Indistinct, broken or small print on several pages
- 8. Print exceeds margin requirements _____
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) _____ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Other

University Microfilms International

The synthesis and characterization of

some binary and ternary

zirconium iodides

by

Dennis Hugh Guthrie

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Chemistry Major: Inorganic Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

Page

GENERAL INTRODUCTION	1
EXPERIMENTATION	5
PART I. THE BINARY Zr-ZrI4 SYSTEM	10
THE SYNTHESIS AND STRUCTURE OF AN INFINITE CHAIN FORM OF ZrI ₂ (α)	14
STRUCTURE OF B-ZrI2: A M6X12 CLUSTER	33
THE "PHASE" ZrI1.8	45
PART II. THE TERNARY CsI-Zr-ZrI ₄ SYSTEM	53
THE STRUCTURE OF Cs ₃ Zr ₂ I ₉ AND A COMPARISON WITH Cs ₃ Y ₂ I ₉	56
THE SYNTHESIS AND CHARACTERIZATION OF THE FIRST TERNARY ZIRCONIUM IODIDE CLUSTER CsZr ₆ I ₁₄	67
FUTURE WORK	84
REFERENCES	91
ACKNOWLEDGEMENTS	96
APPENDIX A. OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (X10) FOR α -ZrI ₂	97
APPENDIX B. OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (X10) FOR β -ZrI ₂	101
APPENDIX C. THE CALCULATED AND OBSERVED GUINIER POWDER DIFFRACTION PATTERNS FOR Cs ₂ ZrI ₆	105
APPENDIX D. OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (X10) FOR Cs3Zr2I9	108
APPENDIX E. OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (X10) FOR CsZr ₆ 1 (CRYSTALS 1 AND 2)	111

GENERAL INTRODUCTION

Zirconium compounds were first discovered by Klaproth in 1789, while the metal itself was not isolated until 1824 by Berzelius. Zirconium, like many other transition metals, was first purified via the van Arkel-DeBoer process. Crude metal was transported from a \sim 350°C region to a filament of the particular metal resistively heated to \sim 1500°C by an iodide vapor phase transport reaction. The vapor phase species in the case of zirconium is ZrI_A .

Zirconium was first employed in industry because of its strength, ductility, ease of fabrication and its resistance to acid and/or water corrosion. However, upon the birth of the nuclear age it was found to have one additional important property: a very low thermal neutron cross section (0.18 barns/atom). This combined with its high temperature stability and resistance to corrosion in hot water made it an excellent choice for containment of UO, fuel in water cooled reactors. The major problem then is that hafnium, which naturally occurs with zirconium, has a high (113 barns/atom) thermal neutron cross section, making the separation of these elements critical. Zirconium and hafnium are found together naturally in the ore zircon where hafnium is usually 2-3% of the zirconium content. Both metals have very similar physical and chemical properties which makes their separation difficult. Therefore, reactor grade zirconium (<100 ppm Hf) is produced via a long wet chemistry scheme (1). However, when zirconium is produced for commercial applications other than use in reactors, the relatively small hafnium

content is generally of no concern. In such cases the metal is obtained from the reduction of the tetrachloride with Mg to yield MgCl₂ and metal (the Kroll process).

The use of zirconium in nuclear reactors, usually in the form of Zircaloy-2 containing $\sim 1.5\%$ tin, has spurred research in the area of zirconium compounds. A lot of emphasis has been placed upon the binary Zr-ZrI₄ and ternary CsI-Zr-ZrI₄ systems because of the phenomenon of stress-corrosion-cracking (SCC). Many researchers in the field (2-4) believe SCC of Zircaloy-2 tubing is caused by iodine and/or cesium, both of which are fission products of UO₂. SCC of Zircaloy-2 occurs when fuel rods are exposed to a stress and reactor power increases after a sufficiently large fuel burn up. Therefore, in addition to the development of general information on transition metal halide chemistry it was hoped that this investigation into the binary $Zr-ZrI_4$ and ternary CsI-Zr-ZrI₄ systems might shed new light upon compounds perhaps important in SCC of Zircaloy-2.

When this work was initiated two binary iodides were well-known, ZrI_4 and ZrI_3 . The first is an orange-red material obtained at $\sim 350^{\circ}C$ from the reaction of I_2 with Zr. Though its structure is similar to those of α -NbI₄ (5), $ZrCI_4$ (6) and β -ReCl₄ (7), it is unique in that the infinite chains of ZrI_6 octahedra share nonopposite edges to form a helical arrangement with a period of six octahedra along the chain (8).

Zirconium triiodide has been found to be nonstoichiometric over the range (775°C) 2.83(5) \leq I:Zr \leq 3.43(5) (475°C) (9). In the ideal stoichiometry one-third of the octahedral holes are filled between h.c.p.

iodine layers to form linear chains of ZrI_6 octahedra which share opposite faces. The zirconium atoms therefore form linear chains parallel to the <u>c</u> axis. The synthesis of " ZrI_2 " had also been reported by Sale and Shelton (10) from the disproportionation of ZrI_3 under a 360/390°C gradient in a sealed Pyrex tube. However, the powder pattern reported was found to agree well with that of the lower limit triiodide $ZrI_{2.8}$ (9). In addition to the known compounds ZrI_4 and ZrI_3 , Daake (11) prepared a phase assigned the composition " $ZrI_{1.8}$ ". This was obtained from the reaction of ZrI_3 or ZrI_4 with a large excess of zirconium at $\sim 750°C$ for two weeks. The black platelet phase had a unique powder pattern; the composition was obtained from wet chemical analysis. In the present work the known binary zirconium iodides have been expanded to include two polymorphs of ZrI_2 (α , β). In addition, a discussion of the " $ZrI_{1.8}$ " phase will be presented.

Other published work in the $Zr-ZrI_4$ system agrees at least in part with that reported here and earlier by Daake and Corbett (9). Cubicciotti and coworkers report thermodynamic evidence for a nonstoichiometric triiodide from 3.4-2.8 as well as a diiodide from 2.0-1.9 (\sim 420°C) (12). In addition, other more reduced phases such as $ZrI_{1.7}$, $ZrI_{1.0}$ and $ZrI_{0.16}$ (13) were also said to exist. These highly reduced phases were observed in extremely small quantities via a scanning electron microscope (SEM).

No previous work had been carried out in the $CsI-Zr-ZrI_4$ ternary system. However, work in the closely related $CsCI-Zr-ZrCI_4$ (14) system indicated that Cs_2ZrI_6 might be expected while work in $CsCI-Nb-NbCl_5$ (15)

indicated $Cs_3 Zr_2 I_9$ might be formed. In addition to these two ternary iodides a third, $CsZr_6 I_{14}$, has been discovered as well as evidence for yet another phase.

The work in the binary and ternary systems is divided into PART I and PART II, respectively. Each part is then further subdivided according to individual compounds (to allow a more indepth look at each), each with a more specific introduction.

EXPERIMENTATION

Starting Materials

<u>Zirconium metal</u>. Within the Ames Laboratory zirconium can easily be acquired from Rick Schmidt as a crystal bar $\sim 9-12$ cm long and 1-2 cm in diameter. This reactor grade metal (<500 ppm Hf) has been obtained via the Van Arkel process. The bar was first cleaned with a metal cleaning solution (45% conc. HNO₃, 45% H₂O and 10% HF by volume) and then rinsed with acetone. In order to cold-roll the metal with minimal cracking, the bar was melted into a loaf under vacuum and then coldrolled into strips 0.4-0.5 mm thick. From this single strip, smaller strips were cut to $1/2 \ge 6$ cm strips for isothermal or small gradient reactions or $1/2 \ge 10-12$ cm for large gradient reactions. The next step was either to electropolish the strips or to clean them in acetone followed again by the metal cleaning solution. Finally, the strips were washed once more in acetone, dried, and stored under vacuum.

<u>Zirconium tetraiodide</u>. This is the only zirconium iodide which can easily be prepared from the reaction of metal and iodine. This was achieved by reacting gaseous I₂ (reagent grade, <0.005% Cl and Br) from a reservoir at \sim 150°C with excess metal heated to \sim 350°C in an evacuated and sealed Pyrex container. The orange-red tetraiodide was deposited in a section of the tube which protruded out of the furnace. The product was purified by vacuum sublimation (<10⁻⁵ Torr) through a coarse-grade Pyrex frit at 400°C. As a precaution, ZrI₄ when initially sublimed was sealed in several containers in 2-4 g quantities to avoid any large loss due to an accident and to avoid repeated exposure to the dry box atmosphere.

<u>Cesium iodide</u>. CsI (Alfa Products) was recrystallized from a 0.05 wt. % aqueous HI solution and then dried (350°C) and stored under vacuum.

Synthesis

When considering the synthesis of reduced early-transition metal or rare-earth metal halide compounds, several problems come to mind: 1) the air and moisture sensitivity of almost all compounds, 2) the high temperatures (600-100°C) often required to obtain these compounds, 3) the high pressures (up to 30 atm.) obtained when the more volatile reactants are heated to these high temperatures, 4) the reactivity of these reduced compounds with fused silica at high temperatures, 5) the low yields often obtained (1-15%). In many cases the combination of two or perhaps all five of these problems has made many reduced metal halides basically undiscovered until recently. A substantial break came with the use of tantalum, molybdenum or niobium tubing as reaction vessels. Problems 1-4 stated above can be overcome with the employment of these reaction vessels since they can be sealed under a vacuum or partial atmosphere of an inert gas, and they withstand both high temperatures and pressures, and standardly do not enter into the reaction. Problem 5 may in many cases be resolved by using vapor phase transport reaction conditions to produce single crystal materials on which single crystal

x-ray diffraction may be done. Therefore, the substitution of metal tubing for fused silica or Pyrex tubing has allowed the synthesis of several new metal halides.

Tantalum tubes 9.5 mm o.d. were exclusively used as reaction vessels in the zirconium binary and ternary systems. One end of a cleaned tube was first crimped and then welded within an evacuatible Heliarc welder (16). The tube and starting materials (always sealed within evacuated Pyrex containers for long storage) were then taken into a dry box, the reactants loaded into the tube and the remaining end crimped via a small vise. To transfer the tube from the dry box to the Heliarc welder the tube was placed in a small container. The only direct contact with air was the 0.5 second transfer into the welder, which was immediately evacuated, and then back-filled with a partial atmosphere of helium. The tube was then welded. The tantalum tube was then sealed in an evacuated fused silica jacket before being placed in a furnace since tantalum is quickly oxidized upon heating in the air. Temperatures were monitored by a sheathed thermocouple attached to the outside of the fused silica jacket. Upon completion, the reaction was either allowed to cool slowly in the furnace by turning off the power, or quenched in air or water by removing the tube from the hot furnace.

Reaction tubes were opened within a dry box especially designed for crystal mounting and described in detail elsewhere (17). Identification of phases which have a distinctive reflectivity, color or crystal morphology was achieved by microscopic examination. Individual crystals were selected and picked up with a glass fiber dipped in Vaseline.

They were then inserted into 0.2 or 0.3 mm diameter thin-wall glass capillaries. These capillaries were then either sealed inside the dry box with the aid of a hot nichrome wire or plugged with Vaseline. These were then sealed outside the box with a gas torch and the ends capped with black wax (Apiezon W). Crystals successfully mounted were reexamined under higher magnification outside the box and the best further examined with oscillation photographs taken with a standard Weissenberg camera and Ni-filtered CuK_{α} -radiation. Samples for Guinier powder diffraction were mounted as described elsewhere (11). All remaining products were placed within Pyrex storage containers and sealed under vacuum.

Physical Measurements

<u>X-Ray methods</u>. A variety of x-ray cameras were used. Initially routine phase identification was made with Ni-filtered CuK_a radiation beam and a Phillips Debye-Scherrer camera having the standard 114.59 mm diameter. In the latter stages of this work an evacuable Model XDC-700 Guinier camera, IRDAB, Stockholm, was mainly used. This focussing camera yields excellent quality films by using a quartz monochromator to provide a nearly clean CuK_a incident beam in combination with singleemulsion film or double-emulsion film where only one side was developed. Weissenberg cameras, Charles Supper Co., were usually used in evaluation of possible single crystals and preliminary determination of unit cell constants, with a precession camera, Charles Supper Co., being used at times.

Single crystal x-ray diffraction data were collected on the Ames Laboratory four-circle diffractometer interfaced with a PDP-15 computer. MoK_{α} radiation monochromatized with a graphite single crystal (λ = 0.70954 Å) was used in all single crystal studies.

<u>Resistivity measurements</u>. Resistivity measurements were carried out by Dr. T. Hsiang by standard 4-probe techniques. The probes were attached to a single crystal with silver paste.

PART I. THE BINARY Zr-ZrI SYSTEM

Initial reactions in the search for $2rI_x$ (x < 3) phases were transport-type reactions with $\sim 150^{\circ}$ C gradients, e.g. 600-750°C, 750-900°C. This provided a wide variety of temperatures to allow the formation of any possible phase. Then, when a phase was identified either by a crystal structure or powder pattern, attempts were made to determine the exact conditions needed to synthesize each particular phase in larger quantities.

From the reaction of ~ 1 g of $2rI_4$ with a large stoichiometric excess (2-4 strips or 2-5 g or a surface area of 12-24 cm²) of zirconium in a 700-825°C gradient for approximately one month the products were: black blade-like crystals, a black powder, and $2rI_3$. The crystals ($\sim 20\%$ yield) were found growing on both the metal and walls of the tantalum tube in the $\sim 750°$ C region. The black powder ($\sim 10\%$ yield) coated the entire surface of the metal strips while the $2rI_3$ ($\sim 70\%$ yield) was in the cold end of the tube. Powder patterns of both the crystals and black material agreed with that of " $2rI_{1.8}$ " (11). However, the $\alpha - 2rI_2$ data crystal was mounted from a reaction of this type (see the " $2rI_{1.8}$ " RESULTS). The hypothesized sequence of reactions needed to form crystals of diiodide (assuming, at least for this illustration, that " $2rI_{1.8}$ " is $2rI_2$) are:

(1) $2ZrI_4(g) + Zr(s) \xrightarrow{T_1} 3ZrI_3(g)$ (endothermic) (2) $2ZrI_3(g) \xrightarrow{T_2} ZrI_2(s) + ZrI_4(g)$

When T_2 and T_1 were 700 and 825°C, respectively, the blade-like crystals mentioned above were obtained. However, if T_2 and T_1 were increased to 800 and 900°C, respectively, gem crystals of β -ZrI₂ (Zr₆I₁₂) were deposited (\sim 10% yield) in the 850°C region while a black layer of β -ZrI₂ (\sim 5% yield) coated the entire metal surface and unreacted ZrI₃ (\sim 85% yield) condensed in the cold zone on cooling. There appears to be an overlap in the stability regions for \propto and β -ZrI₂ since both blade and gem crystals have been observed together between 800 and 825°C.

The low yields of ZrI_x (x < 3) products are thought to be caused by blockage of the metal surface which prevents complete reduction of the more oxidized species. In a reaction such as that mentioned earlier, \mathcal{I} g ZrI_4 and 3-6 g Zr, as the temperature increases $ZrI_4(g)$ is reduced to $ZrI_3(g)$ with a layer of $ZrI_3(s)$ being deposited on the metal surface. Then as the temperature increases the ZrI3 may be directly reduced to form a layer of $2rI_2(s)$ (\propto , " $2rI_{1.8}$ " or β depending on the exact temperature). This less volatile $ZrI_{2}(s)$ (the assumption that $ZrI_{2}(s)$ has a low vapor pressure is not unfounded (18)) is thought to block the metal surface. At this point the transport reaction, equations 1 and 2, becomes predominant and crystals, up to 2-cm-long blades (700-825°C, α -ZrI₂, "ZrI_{1.8}") or 0.2-0.5 mm gems (800-975°C, β -ZrI₂), are slowly deposited upon the layer of diiodide coating the metal as well as the wall of the tantalum tube. Because the surface of the metal is blocked unreacted ZrI, remains and is condensed in the coldest zone of the tube. From this explanation it would seem that the addition of extra metal should result in higher yields. However, a little ZrI₂(s) seems to go

a long way so that even small quantities of $2rI_4$ (0.02 g) reacted with 3-5 g of metal result in unreacted $2rI_2$ (T > 900°C).

In attempts to produce other reduced phases virtually every possible temperature region from 700-1000°C has been explored by either isothermal or gradient reactions. All temperatures above 900°C were explored by both small and large gradients, < 50°C and 100-200°C, respectively, while below 900°C most gradients were >50°C. Different starting materials such as ZrI4 or ZrI2 along with either metal strips or metal powder were used. In addition, the reaction times were varied from 1-6 weeks and different stopping techniques such as slow cooling (turning off the power to the furnace) or air and water quenching were employed. The use of different starting materials resulted in the same products although only a small amount of work has been done with the powdered metal. Both slow cooling and air quenching also produced the same products, the only difference being the first allows ZrI3 to deposit in the cold end as crystals while the latter yields a fine powder of ZrI, throughout the tube. Water quenching in some cases produced, in addition to ZrI_3 , small quantities of ZrI_4 (10%) presumably via some type of a disproportionation. Reactions generally proceeded for two weeks; if single crystals were desired via a transporttype reaction then they proceeded for 4-6 weeks.

Though not completely understood, blade-like crystals have been seen at unusually high temperatures in two reactions. Reactions 21 and 35 (19) were $\sim 870-950^{\circ}$ C gradient reactions which contained ~ 0.5 g of ZrI₄ and ~ 3 g of Zr strips. Each reaction proceeded for ~ 1 month. Upon opening, ZrI_3 (80%) was found in the cold end of the tube along with β -ZrI₂ gem crystals, while the entire length of the metal strips was coated with a layer of β -ZrI₂. Blade-like crystals (5%) were found in the hot end of the tube both on the layer of β -ZrI₂ and on the wall of the tantalum tube. One of the crystals mounted from reaction 21 was found to have an orthorhombic cell (<u>a</u> = 3.738(1), <u>b</u> = 6.817(2) and <u>c</u> = 14.860(4) Å) very similar to the monoclinic cell of α -ZrI₂ (see ZrI_{1.8} section). No other phases have been seen or identified by either powder or single crystal x-ray diffraction. In addition, no phases are thought to be stable above \sim 975°C since only annealed metal strips and ZrI₃ have been obtained at such high temperatures.

THE SYNTHESIS AND STRUCTURE OF AN INFINITE CHAIN

FORM OF $2rI_2(\alpha)^1$

¹In press: D. H. Guthrie and J. D. Corbett, <u>J. Solid State Chem</u>. <u>38</u> (1981).

INTRODUCTION

Several reduced zirconium halides with zirconium in an oxidation state less than three have recently been synthesized and characterized. Among the chlorides and bromides are the clusters Zr_6Cl_{15} (20) and Zr_6X_{12} (21), $ZrC\ell_2$ (3R-MoS₂-type) (22,23), and the double-metal-layered ZrCl (17,24,25) and ZrBr (26) compounds. Yet until recently the only well characterized zirconium iodides were ZrI4 and ZrI3, both known for their importance in the purification of zirconium via the van Arkel process. The triiodide has been found to be nonstoichiometric over the range ZrI_{2.83} (775°C) to ZrI_{3.43} (475"C), with a recognizable superstructure to x-rays at the upper limit (9). The synthesis of a zirconium diiodide has been reported by Sale and Shelton (10) from the disproportionation of ZrI₃ under a 360/390°C gradient in a sealed Pyrex tube. However, the reported powder pattern has been found to correspond closely to that of the lower limit triiodide $ZrI_{2,8}$ (9). Lack of earlier evidence for zirconium iodides more reduced than the ZrI3 phase appears to have originated mainly from the use of reaction times which were too short, temperatures which were too low and, probably, glass containers. Increases in these two parameters and the use of sealed tantalum containers have enabled the synthesis of the cluster $Zr_{6}I_{12}$ (20), and the present article reports on a second polymorph of ZrI2, an infinite metal chain form. The new phase is stable at lower temperatures (775°C) than $Zr_{6}I_{12}$ (875°C) and therefore is referred to as α -ZrI₂.

EXPERIMENTAL SECTION

Materials and Synthesis

<u>Materials</u>. Reactor-grade crystal bar zirconium (<500 ppm Hf) was melted into a loaf under vacuum, cut into \sim 2 mm thick slices, and these were cold-rolled to strips 0.4 - 0.5 mm thick. The strips were then either electropolished or cleaned in acetone and then in a solution of 45% conc. HNO₃, 45% H₂O, 10% HF to remove any hydrocarbons and surface impurities picked up during cold rolling. The strips were then washed with acetone, dried, and stored under vacuum.

The tetraiodide was prepared by reaction of gaseous, reagent-grade iodine (<0.005% CL and Br) from a reservoir at \sim 150°C with excess metal heated to 350-400°C within a sealed Pyrex container. The product was purified by vacuum sublimation (<10⁻⁵ Torr) through a coarse grade Pyrex frit at 400°C. Transfer and manipulation of all materials was done by standard vacuum-line or dry box techniques.

<u>Synthesis</u>. The use of sealed tantalum tubing as a reaction vessel for high temperature reactions involving lower halides of zirconium has proven very successful (9,17,23,24,26), and this approach was continued. The containers were induction cleaned (1800°C), arc welded under helium after filling, jacketed in fused silica tubes and sealed off under vacuum. Temperatures were monitored during the reaction with thermocouples fastened to the outside of the silica jacket. Any temperature difference between the Ta container and the outside of this jacket is considered small at the temperatures involved and fairly constant from reaction to reaction. The initial synthesis used \sim l g of $2rI_4$ with a large excess of zirconium strips which extended the length of a 10-12 cm long, 0.95 cm o.d. tantalum tube. The reaction was carried out for four weeks under a 750/850°C temperature gradient after which the container was allowed to cool in the furnace. Long reaction times are required to overcome kinetic problems known in this and similar systems (23,27), and the temperature gradient allowed formation of phases which might be stable only in a limited temperature region. A 10-20% yield of lathlike crystals with a high metal-like luster were found growing in the 775°C region on the zirconium strip as well as the inside walls of the tantalum tube. These are thought to have been produced via the transport reactions

 $32rI_4(g) + 2r(s) \xrightarrow{850^\circ C} 42rI_3(g)$ (endothermic)

followed by

$$22rI_{3}(g) \xrightarrow{\alpha-2rI_{2}(s)} + 2rI_{4}(g)$$

Subsequent reactions have indicated that the metal in the 775°C region first becomes coated with a powder and small crystals of α -ZrI₂, presumably because of the presence of a large number of nucleation sites and a high P_{ZrI₄} in the early stages of the reaction. As the reaction proceeds larger crystals are formed, sometimes up to 2 cm long. A temperature zone <775°C (750°C) is necessary to allow separation of any ZrI₃ formed from α -ZrI₂.

DATA COLLECTION

The Ta tube was opened in a dry box especially designed for crystal mounting, and suitable specimens selected under low magnification. These were sealed in the capillaries with the aid of a hot nichrome wire and later resealed outside the dry box with a gas flame. The single crystal selected for data collection was chosen with the aid of oscillation photographs and had extreme dimensions of 1.17 x 0.08 x 0.01 mm. Data for the indicated monoclinic unit cell were collected at ambient temperature on an automated four-circle diffractometer designed and built in the Ames Laboratory (28) using MoK_{α} radiation monochromated with a graphite crystal ($\lambda = 9,70954$ Å). All data within a sphere defined by $2\theta < 50^{\circ}$ were collected in the HKL, HKL, HKL HKL octants using an ω -scan mode. Peak heights of three standard reflections did not show any significant change over the period of data collection. A total of 1427 of the 1750 reflections checked were classed as observed by the criterion $I > 3\sigma(I)$. The observed intensities were corrected for Lorentz and polarization effects after which appropriate averaging of duplicate reflections yielded 669 independent data. Final monoclinic cell parameters and their estimated standard deviations were obtained from the same crystal by a least-squares fit to 20 values of 12 reflections randomly distributed in reciprocal space $(27^{\circ} < 20 < 44^{\circ})$ which were tuned for both Friedel-related peaks; the result was $\underline{a} = 6.821(2)$, $\underline{b} =$ 3.741(1), c = 14.937(3) Å and $\beta = 95.66(3)^{\circ}$. The edges of the crystals

lie parallel to the cell axes and the crystal dimensions are inversely related to the axial lengths.

STRUCTURE DETERMINATION

The unit cell was indicated to be centric based on a Howells-Phillips-Rogers test of the intensity distribution, and since no extinction conditions were noted the monoclinic space group P2/m was chosen. Placement of all atoms on the mirror planes at $\underline{y} = 0.0$ or 0.5 appeared likely based on the short \underline{b} axis, 3.74 Å, which is essentially the van der Waals diameter of iodine.

Trial atom positions were obtained by a direct method using MULTAN (29). Several sets so produced were eliminated on the basis of chemical and structural common sense. After full-matrix least-square refinement of positional and isotropic thermal parameters for the best set, an R = $\Sigma ||F_0| - |F_c|| / \Sigma |F_0| = 0.107$ was obtained. Closer inspection of the structure and data set at this point revealed the existence of a two fold screw axis (0k0, $k \neq 2n$ absent); therefore, the correct space group is $P2_1/m$ (No. 11) with all atoms on the special position 2e. Refinement with anisotropic thermal parameters then produced a R = 0.071and $R_{w} = 0.010$ where $R_{w} = [\Sigma w (|F_{o}| - |F_{c}|)^{2} / |w\Sigma F_{o}|^{2}]^{1/2}$ and $w = \sigma_{F}^{-2}$. Need for an absorption correction was indicated by elongation of the thermal ellipsoids along b, the shortest crystal axis. The correction utilized the program TALABS (30) and an absorption coefficient of μ = 190 cm^{-1} (31) and the crystal was approximated as a rectangular box of extreme dimensions stated earlier. Because of the large differences in crystal dimensions, transmission coefficients varied from 0.25 to 0.82 and chi and phi settings for the faces were found to be critical.

After this was completed (R = 0.065, $R_w = 0.115$) the stronger reflections were observed to have larger values of $w||F_o|-|F_c||$. The data were therefore reweighted in groups sorted on F_o to give final converged residuals R = 0.064 and $R_w = 0.079$, with a final shift/error of <0.001 for all atoms. The thermal ellipsoids were now more reasonably shaped, and the standard deviations were $\sim 15\%$ lower than before. A final Fourier difference synthesis map was flat to $\leq 1 e/A^3$ at all points.

DESCRIPTION OF THE STRUCTURE

Final positional and thermal parameters for the structure of α -ZrI₂ are listed in Table I and significant distances and angles, in Table II. Structure factor results are in Appendix A.

An approximately [010] projection of the structure is shown in Figure 1. The iodine positions can be related to h.c.p. layers normal to <u>c</u>, with metal atoms (solid) occupying all octahedral sites between alternate layers to form slabs analogous to those in the CdI_2 structure. In the present case, however, the metal atoms are displaced 0.440 Å from the centers of the octahedral sites toward shared edges of the polyhedra to form zig-zag chains parallel to <u>b</u>. This displacement of the metal atoms causes the iodine layers in each slab to buckle, and packing of these buckled layers in effect requires a second slab with independent atoms. Equivalent distances in the two independent slabs all differ by less than 3σ (Table II) except that the $I4^e - I2^b$ and $I4^a - I2$ distances differ by 6σ (0.016 Å) in opposite directions.

The [001] projection in Figure 2 shows two iodine layers and the intervening metal layer which lies at $z \approx 0$. The two iodine octahedra outlined share a common edge ($I2^b \& I2$) through which the presumed Zr-Zr bond passes. Edges of these polyhedra range between 3.74 and 4.47 Å except for the shared edge $I2^b - I2$ which is 4.89 Å. This elongation results when the adjacent shared edges of the occupied iodide octahedra are pushed apart to make room for the Zr-Zr bonds. Corresponding effects are observed in the zirconium-iodine distances.

Table I. Crystallographic data and atom parameters^a for α -ZrI₂.

Composition: $2rI_2$ Cell: monoclinic, $P2_1/m$ (no. 11), Z = 4Lattice parameters: <u>a</u> = 6.821(2) Å, <u>b</u> = 3.741(1) Å, <u>c</u> = 14.937(3) Å, $\beta = 95.66(3)$

Refinement: R = 0.064, R_{W} = 0.079 (669 reflections, $2\theta \le 50^{\circ}$)

	x	Z	в ₁₁ в	^B 22	^B 33	^B 13
I1	0.6031(3)	0.6095(1)	1.13(6)	0.53(6)	1.42(7)	0.07(2)
12	0.4498(3)	0.1473(1)	1.47(7)	0.62(6)	1.18(7)	0.02(2)
13	0.8881(3)	0.3528(1)	1.34(7)	0.57(6)	1.30(7)	-0.05(2)
14	0.0545(3)	0.8901(1)	1.17(7)	0.58(7)	1.39(7)	-0.02(2)
Zrl	0.1892(4)	0.5036(2)	0.93(9)	0.76(8)	1.44(9)	-0.00(3)
Zr2	0.6880(4)	0.9969(2)	0.95(9)	0.81(8)	1.26(7)	-0.01(3)

 $a_{y} = 0.25.$

 $B_{12} = B_{23} = 0$ by symmetry.

Distance

Zr-Zr, Intrachain			
$2^{f} - 2^{a}$	3.183(3)	$1 - 1^{g}$	3.181(3)
$2^{a} - 2^{c}$	3.741(1)	$1^{g} - 1^{j}$	3.741(1)
Zr - Zr, Interchain	1		
$2^{f} - 2^{i}$	4.642(4)	$1 - 1^{a}$	4.644(4)
Zr-I			
$2^{f} - 4^{e}$	3.096(2)	1 - 1	3.099(3)
$2^{f} - 2$	2.896(3)	$1 - 3^{h}$	2.895(3)
$2^{f} - 4^{a}$	2.973(2)	$1 - 1^{a}$	2.973(2)
$2^{f} - 2^{b}$	2.936(2)	$1 - 3^{a}$	2.933(2)
I - I, Intrasheet			· · ·
$4^{e} - 2^{b}$	3.909(2)	$1 - 3^{a}$	3.925(2)
$4^{a} - 2$	3.950(2)	$1^{a} - 3^{h}$	3.934(2)
$4^{a} - 4^{c}$	3.741(1)	$1^{a} - 1^{c}$	3.741(1)
$2^{b} - 2^{d}$	3.741(1)	3 ^a - 3 ^c	3.741(1)
$4^{e} - 4^{a}$	3.911(3)	$1 - 1^{a}$	3.914(3)
$4^{a} - 2^{b}$	4.469(3)	$1^{a} - 3^{a}$	4.470(2)
2 ^b - 2	4.887(3)	$3^{a} - 3^{h}$	4.884(3)
2 – 4 ^e	5.904(3)	$3^{h} - 1$	5.902(3)

Table II (cont.)

I - I, Intersheet	
$1^{a} - 2$	4.132(2)
4 ^a - 3	4.136(2)
$4^{a} - 1^{a}$	5.885(3)
3 - 2	4.068(2)
$2 - 3^{h}$	5.143(2)
$1^{a} - 4^{g}$	4.948(3)

Angles

I - Zr - I, Coordination Polyhedra

4 ^a -	$2^{f} - 4^{c}$	77.97(7)	$1^{a} - 1 - 1^{c}$	77 .9 7(6)
4 ^a -	$2^{f} - 2^{b}$	98.26(4)	$1^{a} - 1 - 3^{a}$	98.35(4)
2 ^b -	$2^{f} - 2^{d}$	79.15(7)	$3^{a} - 1 - 3^{c}$	79.23(6)
2 ^b -	$2^{f} - 4^{e}$	80.15(7)	$3^{a} - 1 - 1$	81.13(6)
4 ^a -	$2^{f} - 4^{e}$	80.23(5)	$1^{a} - 1 - 1$	80.23(6)
2 ^b -	$2^{f} - 2$	113.85(6)	$3^{a} - 1 - 3^{h}$	113.84(6)
4 ^a -	$2^{f} - 2$	84.58(6)	$1^{a} - 1 - 3^{h}$	84.18(6)

I - I - I, Intrasheet

$2^{d} - 4^{e} - 2^{b}$	57.18(3)	$3^{c} - 1 - 3^{a}$	56.92(3)
$4^{e} - 2^{b} - 2^{d}$	61.41(2)	$1 - 3^{a} - 3^{c}$	61.44(2)
$4^{c} - 2 - 4^{a}$	56.54(3)	$1^{c} - 3^{h} - 1^{a}$	56.78(3)
$2 - 4^{a} - 4^{c}$	61.73(2)	$3^{h} - 1^{a} - 1^{c}$	61.61(2)

Figure 1. The α -ZrI₂ structure viewed parallel to the zig-zag metal chains and the short <u>b</u> axis. Zirconium and iodine atoms are represented by solid and open ellipsoids, respectively.

Figure 2. View of two iodine layers and the intervening zig-zag metal chains with two iodine octahedra which share a common edge outlined. All atoms lie on mirror planes at y = 0.25 and 0.75. The iodine atoms partially darkened lie toward the viewer.

The metal-metal distances in α -ZrI, are closely comparable to those in the cluster $2r_6I_{12}$ (β -ZrI₂) despite the lower number of metal neighbors in the former. The two Zr-Zr bonds per d^2 metal in α -ZrI₂ are formally single bonds but a substantial bonding restriction (matrix effect) is superimposed by the edge sharing of the distorted iodine octahedra, and the 3.182(2) A distances observed corresponds to a Pauling bond order of only 0.31. In β -ZrI₂ each zirconium has pairs of metal neighbors in the Zr_6 octahedron at 3.195(1) Å and 3.204(2) Å. These are now formally bonded by half bonds and although repulsions between iodine atoms which bridge edges of the metal octahedron clearly restrict the approach of the metal atoms this is not as severe as in α -ZrI₂. Since the metal-bonding electrons do not screen the iodine atoms, the Zr-I distances are very similar throughout, 2.895(3) - 2.973(2) A for the closer five in α -ZrI₂ vs. 2.860(2) - 2.947(2) Å for the closer four in β -ZrI₂, and 2.863 Å for the average in ZrI₄ (8). The transformation from α - to β -ZrI₂ at high temperatures involves a loss of two Zr-I bonds and a gain of two Zr-Zr bonds, and is thought to be largely entropically driven to the more open structure (the center of the Zr₆ cluster corresponds to a missing iodine atom in a close-packed layer).

The metal-metal interactions in the α -ZrI₂ chains still must be classed as "strong" since the 3.182 Å separation is less than the 3.204 Å average distance found in the (12-coordinate) metal. The result is a filled band semiconductor experimentally, with $\rho = 22$ ohmcm and Eg \approx 0.1 eV at room temperature according to four probe measurements. No esr signal is observed at 94.7 Hz at either 20 or -196°C. In a localized sense one can view the sigma bonds as generated by d_{xz} and $d_{x^2-y^2}$ orbitals, and these generate a filled band.

DISCUSSION

The α -ZrI₂ described here is isostructural and isoelectronic with β -MoTe₂ (32), and as such represents the first halide found with this particular structure. A considerable similarity also exists with the higher symmetry WTe₂ (space group Pnm2₁), the only difference being a smaller displacement of one slab with respect to another so that the β -angle, Fig. 1, decreases to 90° and an <u>n</u>-glide develops parallel to <u>c</u>. In fact an incipient <u>n</u>-glide in that direction is evident in the positional parameters in α -ZrI₂ except for the x-coordinates of the iodine atoms (Table I). In contrast with α -ZrI₂ however, MoTe₂ is a semimetal with $\rho = 2 \times 10^{-3}$ ohm-cm at 25°C (33).

Structural similarities between reduced metal sulfides and selenides with those involving isoelectronic chloride and bromide anions are relatively rare. A direct relationship exists between MoS_2 and one polymorph of ZrCl (23) as both have the $3R-MoS_2$ type layered structure with trigonal prismatic coordination of the metals, while a lesser element of similarity occurs between Hf_2S (34) and HfCl (26) where both contain infinite double metal layers but these are separated by a different number of nonmetal layers. The lack of more S vs. Cl and Se vs. Br structural similarities has been attributed to the greater covalency of the chalcide relative to that in the isoelectronic halide (35). Not surprisingly, iodine which bonds more covalently exhibits a larger number of isostructural relationships with the chalcides. Examples of these
include PrI_2 and MoS_2 (2H₁ and 3R types), GdI_2 and MoS_2 (2H₁) (36), ThI_2 and 4H-NbS₂ (37), and that seen here for β -MoTe₂ and α -ZrI₂. Even so, mixing of iodide and metal valence orbitals is presumably less, making the bands narrower and metallic conduction less prevalent than in the chalcides.

An indication of the M-M bond strength in α -ZrI₂ and similar distorted structures may be found in the magnitude of the lattice strain which accompanies M-M bond formation, specifically the amount of polyhedral distortion reflected in the ratio of the shortest to the longest M-X bonds (33). These ratios are 0.935, 0.959, and 0.962 for α -ZrI₂, β -MoTe₂ and WTe₂, respectively, indicating that α -ZrI₂ has the strongest M-M bonds or the weakest M-X bonds. On the other hand, the metal-metal distances in both β -MoTe₂ and α -ZrI₂ are comparable, being 10.5 and 10.7% greater than the corresponding single bond distances. Thus, relative to the semimetallic β -MoTe₂ the strong M-M bonding or greater distortion in α -ZrI₂ combined with the greater separation of a tomic orbital energies for zirconium and iodine causes a separation of a filled valence band and the empty conduction band and gives a semiconducting α -ZrI₂.

The adoption of a distorted CdI_2 -type structure for these can easily be understood in terms of the extra stability obtained from the formation of two relatively short M-M bonds. The possibility of an α - $ZrI_2 \rightarrow \beta$ - ZrI_2 transition at an observable rate seems remote, as this would require more than a simple intralayer rearrangement of the metal atoms, although such a transition is thought to occur by a topotactic path between the CdCL₂-type structure of PrI₂ (IV) and the cluster (Pr_4I_4) I_4 (type V) form (36). The transition from the α -ZrI₂ structure ($P2_1/m$) to an undistorted CdI₂-type ($P\overline{3}m1$) structure, which requires only an intralayer displacement of the metal atoms, is allowed by Landau's theory of second order phase transitions (38) but is at present unknown. A similar transition has been observed between the MnP and NiAs-type structures of VS (39). In addition, there also exists the possibility of a low-temperature first-order phase transition in α -ZrI₂ to the Pnm2₁ structure of WTe₂. This has been observed for (metastable) β -MoTe₂ where the β angle varies discontinuously from 93.92° ($P2_1/m$) to 90° (Pnm2₁) within the temperature range 17° C \rightarrow -40°C (40), the low temperature orthorhombic structure thus being produced via a shear deformation of the nonmetal layers perpendicular to the <u>c</u> axis. The pseudosymmetry relating atomic coordinates in the present structure (Table I) that was noted earlier reflects this potential.

A series of orthorhombic zirconium diiodides has recently been reported (41) which had cell parameters: $\underline{a} = 3.74 \text{ Å}$, $\underline{b} = 6.93 \text{ Å}$, $\underline{c} = n \ge 14.85 \text{ Å}$, where the n = 24 polytype was studied the most. These were obtained in the 760-780°C temperature range and were thought to contain "alternating I-Zr-I double layers". Since the axial lengths are similar to those reported here, these may represent polytypes of a WTe₂-type structure or, less likely, 2H-CdI₂, with pairs of three layer slabs in the simple unit. STRUCTURE OF B-ZrI2: A M6X12 CLUSTER

INTRODUCTION

Binary halogen-bridged clusters of the early transition metals such as $M_6 x_{12}^{n+}$ (n = 2,3,4) and $M_6 x_8^{m+}$ (m = 4 principally) which contain an octahedral cluster of metal atoms have been well-known for several years (42). The transition metals usually associated with these compounds are M = Nb and Ta and M' = Mo and W. Recently, however, some newcomers have appeared on the scene: Zr_6Cl_{15} , Sc_7Cl_{12} and Zr_6I_{12} (20). This trio has facilitated a new trend of thinking: that six atom clusters can indeed be stable even though they may contain as few as 9 e/cluster, as is the case for $2r_6Cl_{15}$ and Sc_7Cl_{12} . Prior to this no clusters were known with fewer than 14 e/cluster and no discrete clusters of any sort had been made with elements earlier in the transition metal block than group V. Even now this trio has already been expanded to include Zr_6Cl_{12} and $2r_6Br_{12}$ (21) which are isostructural with $2r_6I_{12}$ as well as La_7I_{12} (43) which is isostructural with Sc_7Cl_{12} . The late arrival of metal clusters in groups III and IV is partly because suitable containers have only recently been known, but also it may be attributed to kinetic problems of formation rather than thermodynamic limitations of stability. A communication containing the original trio has appeared (20); Zr_6Cl_{15} and Sc_7Cl_{12} are discussed in more detail in Daake's (11) and Poeppelmeier's (44) theses, while a more detailed discussion of $\operatorname{Zr}_6I_{12}$ will now be presented.

DATA COLLECTION

Gem crystals of β -ZrI₂ were sealed in 0.3 mm thin-wall glass capillaries under a dry nitrogen atmosphere. A single crystal, 0.25 x 0.35 x 0.45 mm, was selected via oscillation photos, indexed and diffraction data were collected on a rhombohedral cell with the hexagonal axes <u>a</u> = 14.502(2) and <u>c</u> = 9.996(2) Å based on tuned 20 values for 12 reflections ($30 \le 20 \le 44^{\circ}$). Two octants of data, HKL and HKL, ($20 \le$ 50°) yielded 1119 observed (I > $3\sigma(I)$) reflections which, when reduced and averaged in Laue symmetry 3, gave 609 independent reflections.

STRUCTURE DETERMINATION

Initial least-squares refinement on two iodine atoms and one zirconium atom (18-fold general positions) obtained via MULTAN (20) gave an R = 0.14. At this point a difference map indicated negative peaks at the atom positions. Examination of the data revealed low angle (20) reflections had F_0 's significantly less than F_c 's and that the large intensity reflections ($F_c > 700$) also had $F_0 < F_c$ indicating absorption and secondary extinction problems (45), respectively. Therefore, the raw data were corrected for absorption by TALABS (29) with a crystal shape defined by nine intersecting faces and a $\mu = 178 \text{ cm}^{-1}$ (31). The data were again reduced and averaged and input into EXTLSS (46) (a least-squares program which also allows correction for secondary extinction).

The isotropic full-matrix least-squares refinement converged at $R = \Sigma ||F_0| - |F_c||/|F_0| = 0.150$. Final least-squares refinement with anisotropic thermal parameters, including reweighting (10 groups for 609 reflections, original $\omega \Delta^2$'s varied from 0.377 - 3.197) resulted in an R = 0.109 and $R_{\omega} = [\Sigma \omega (|F_0| - |F_c|)^2 / \Sigma \omega |F_0|^2]^{1/2} = 0.121$. A final difference map was flat to $\leq 1 e/A^3$, even at the center of the cluster.

DESCRIPTION OF THE STRUCTURE

Final positional and thermal parameters for β -ZrI₂ are listed in Table III and important distances and angles, in Table IV. Structure factor results are available in Appendix B. In Figure 3 the cluster $(2r_6I_{12})$ is viewed with the $\overline{3}$ axis vertical; approximately c.c.p. iodine layers stack vertically while zirconium atoms form a trigonal antiprism on either side of the middle iodide layer. The Zr-Zr interlayer distances are slightly shorter than the intralayer bonds, 3.194(1) \Re and 3.204(2) \Re , respectively. The average Zr-Zr distance in this cluster is basically the same as those observed in α -Zr metal where the average Zr-Zr distance is 3.204 \Re (6 neighbors each at 3.179 \Re and 3.231 \Re) (47).

In Figure 3 there are six zirconium atoms and eighteen iodine atoms yet the stoichiometry is $Zr_{6}I_{12}$. This is determined by the sharing of the iodines between different metal clusters. The six solid-black I2 atoms which bridge the edges of the two metal triangles, three above and below the cluster, bond only to the cluster shown and therefore are considered inner (i) iodines. The six striped I1 atoms about the waist of the cluster, bridging the two metal triangles, also occupy an exo position in a neighboring cluster and are referred to as innerouter (i-a, a = aussen (42)). Finally, the six dotted I1 atoms in exo positions, three above and below the cluster, also bridge metal triangles in a neighboring cluster; that is to say they bond in the opposite manner as the striped iodine atoms just mentioned and are

Table III.	Crystallographic	data	and	atom	parameters	for	$\operatorname{Zr}_{4}I_{12}$.
------------	------------------	------	-----	------	------------	-----	---------------------------------

<u>Composition</u>: $2r_6I_{12}$, Z = 3

Cell: trigonal, R3 (No. 148)

<u>Lattice Parameters:</u> $\underline{a} = 14.502(2)$ Å, $\underline{c} = 9.996(2)$ Å

<u>Refinement</u>: R = 0.109, R_{W} = 0.121 (609 reflections, $2\theta \le 50^{\circ}$)

	x	у	2	^B 11	^B 22	^B 33	^B 12	^B 13	^B 23
11 ^b	0.35512(8)	0.10264(8)	0.33260(9)	2.14(6)	1.83(6)	1.5(1)	0.65(2)	0.23(2)	0.15(2)
12 ^C	0.12625(7)	0.17765(8)	0.3246(1)	1.64(6)	1.96(6)	1.2(1)	0.45(2)	-0.102(2)	-0.25(2)
Zrl	0.1430(1)	0.0406(1)	0.1303(1)	1.07(6)	1.01(6)	0.7(1)	0.25(2)	0.02(2)	0.00(2)

^aT = exp[-1/4(B₁₁h²a^{*2} + B₂₂k²b^{*2} + B₃₃k²c^{*2} + 2B₁₂hka^{*}b^{*} + 2B₁₃hka^{*}c^{*} + 2B₂₃kkb^{*}c^{*})].

^bInner-outer (i-a) and outer-inner (a-i) iodine atoms.

^CInner (i) iodine atoms.

Table IV. Important distances (Å) and angles (deg.) for $Zr_{6}I_{12}$.^a

Distance	<u>5</u>		Bond angles
7r-7r			
<u>21-21</u> 3-3 ^d	intralayer	3.204(2)	
3-3 ^b	interlayer	3.194(1)	
<u>Zr-12</u>			<u>Zr-12-Zr</u>
3 ^d -2		2.860(2)	67.96(5)
3-2		2.873(2)	
<u>Zr-11</u>			Zr-I1-Zr
3-1 ^c		2.917(2)	66.02(4)
3 ^b -1 ^c		2.946(2)	
<u>Zr-11</u> 3-1 ^d		3.406(2)	

^aSuperscript letters are symmetry operations for atoms in Figure 3.

Figure 3. The Zr₆I₁₂ cluster with the 3 axis of the cluster vertical and the zirconium atoms connected by heavy lines. The iodines are coded according to their bonding between clusters: solid I2 atoms are inner (i), striped I1 atoms are inner-outer (i-a) and dotted I1 atoms are outer-inner (a-i). Distances are in Angstroms and angles in degrees. The letters in atom identification refer to symmetry operations, Table IV. designated as outer-inner (a-i) iodines. Therefore a more nearly precise description of the $\operatorname{Zr}_{6}I_{12}$ cluster is $\operatorname{Zr}_{6}I_{6}^{1}I_{6\cdot2/3}^{1}I_{6\cdot1/3}^{a-i}$. The Zr_{-I} distances agree with this bonding scheme: the $\operatorname{Zr}_{-I}^{1}$ distances of 2.860 -2.873 Å are shorter than the $\operatorname{Zr}_{-I}^{1-a}$ distances, 2.917 - 2.946 Å, which are shorter than the $\operatorname{Zr}_{-I}^{a-i}$ distances of 3.406 Å. The $\operatorname{Zr}_{6}I_{12}$ cluster can also be viewed as made-up of iodine and metal layers which stack in a cubic-closest packing sequence (ABC...). This is described elsewhere (44).

DISCUSSION

The two compounds $\operatorname{Zr}_{6}I_{12}$ and $\operatorname{Sc}^{3+}\operatorname{ScCl}_{12}^{3-}(\operatorname{Sc}_{7}\operatorname{Cl}_{12})$ are closely related; the metal and halide atoms occupy the same positions except for the cation in the scandium compound. Figure 4 shows a (1120) section of the $\operatorname{Zr}_{6}I_{12}$ structure. In the R3m space group the Sc^{3+} cation occupies the special 3 position (0 0 1/2) which lies directly above and below the metal clusters along the three-fold axis. As of yet no binary or ternary zirconium compound with a cation of this position has been synthesized. However, it seems very plausible that a compound with a small cation such as Na⁺ or K⁺, which would fit into an iodide octahedral hole, could indeed be made (see FUTURE WORK).

In addition to $\operatorname{Zr}_{6}I_{12}$ being isotypic with $\operatorname{Sc}_{7}\operatorname{Cl}_{12}$, both have properties which are similar to those of $\operatorname{Zr}_{6}\operatorname{Cl}_{15}$. All three have the same crystal morphology, gems with very well defined faces. There is also an interesting similarity in their synthetic habits: All have been observed to form crystals which either grow from a whisker-like crystal or have a whisker crystal attached to them. In the case of $\operatorname{Sc}_{7}\operatorname{Cl}_{12}$, this whisker is assumed to have the composition $\operatorname{ScCl}_{1.45}$ and an explanation is given by Poeppelmeier (44). The existence of such a whisker in the case of $\operatorname{Zr}_{6}I_{12}$ was observed earlier (19). Besides these similarities between $\operatorname{Zr}_{6}I_{12}$, $\operatorname{Zr}_{6}\operatorname{Cl}_{15}$ and $\operatorname{Sc}_{7}\operatorname{Cl}_{12}$ there are at least two striking differences. First, in the final Fourier synthesis difference map no residual electron density is found at the center of the $\operatorname{Zr}_{6}I_{12}$ cluster, while there are $\sqrt{7}$ and $\sqrt{8}$ electrons/ \mathbb{A}^3 at the center of the $\operatorname{Zr}_{6}\operatorname{Cl}_{15}$ and

Figure 4. A (1120) section of the Zr_6I_{12} structure which shows only the $Zr-I^{1}$ bonds. The dots just above and below the clusters are special positions with 3 symmetry which contain a Sc^{3+} cation in Sc_7Cl_{12} .

 Sc_7Cl_{12} , respectively. The absence of residual electron density in a Zr_6Cl_{12} cluster in $K_2Zr_7Cl_{18}$ (21) has been reported as well as the presence of the same in the La_7I_{12} (43) compound. Secondly, while $2r_6Cl_{15}$ and Sc_7Cl_{12} both have only 9 e/cluster, $2r_6I_{12}$ has 12. If a general molecular orbital bonding scheme is followed for an octahedral $M_6 X_{12}$ cluster with 12 electrons, they would occupy the a_{2u} and t_{1u} (xz, yz) bonding orbitals with the four remaining electrons going into a t_{lu} (z^2) level (48). Therefore this phase should be paramagnetic with two unpaired electrons. However, the point group symmetry is D_{3d} and not 0_h since the iodides about the waist of the cluster differ from those above and below the cluster and since the interlayer Zr-Zr bonds are slightly shorter than the intralayer Zr-Zr bonds. Therefore, on going from $0_h \rightarrow D_{3h}$ the t_{lu} level splits into an e_u and an a_{2u} level. Now the four electrons pair up in the lower energy e level. This is consistent with the absence of any esr signal for this phase at either room or liquid N₂ temperatures.

THE "PHASE" ZrI 1.8

INTRODUCTION

A phase identified as $\text{ZrI}_{1.8}$ was first synthesized and its x-ray powder pattern reported by Daake (11). It was supposed to be the lowest limit in a composition range ZrI_x , $1.8 \leq x \leq 1.95$, obtained from the reaction of ZrI_3 or ZrI_4 with a large excess of zirconium at $\sim 750^{\circ}\text{C}$ for two weeks. The initial thrust of this research was to obtain single crystals of " $\text{ZrI}_{1.8}$ "; in that attempt the phases α - and β - ZrI_2 were synthesized and identified.

RESULTS

A problem developed, in that though $\alpha - 2rI_2$ had been well characterized and crystals could easily be obtained, a pure α -phase powder pattern had never been observed, but rather a " $2rI_{1.8}$ " pattern. Subsequent Weissenberg work on some of the single $\alpha - 2rI_2$ crystals also revealed extra reflections, initially assumed to be due to a superstructure. Instead, a twinning mechanism was found which has shed new light on the powder pattern reported for " $2rI_{1.8}$ ".

The Weissenberg photography contained extra reflections in the hOl festoons. However, rather than occurring in an ordered fashion, where each festoon would have extra reflections in the same location, the extra reflections were spaced: None in the OOl, \sim 4/5 in the 10l, \sim 1/2 in the 20l, \sim 1/3 in the 30l, \sim 1/6 in the 40l and none in the 50l.

The twinning was first assumed to be due to the intergrowth of monoclinic cells in different orientations. However, when a*c* reciprocal nets for two monoclinic cells were superimposed, the observed pattern for the extra reflections could not be obtained. Therefore, via trial and error an orthorhombic reciprocal net twinned with a monoclinic a*c* reciprocal net was found to produce the pattern seen in the Weissenberg. This twinning mechanism can be seen in Figure 5; the solid lined cell is the reciprocal a*c* net for the α -ZrI₂ monoclinic cell; superimposed on that is a dashed reciprocal net for an orthorhombic cell with very similar dimensions. The points at which the orthorhombic cell intersects the hOl festoons agrees very well with that observed in the Weissenberg

Figure 5. The twinning mechanism of a monoclinic and orthorhombic cell. The solid lined cell is the a^*c^* net from $\alpha-2rI_2$ while the dashed cell corresponds to a reciprocal net for an orthorhombic cell of similar dimensions. The circles show the location of extra reflections on the hOll festoons arising from the orthorhombic cell.

photographs, yielding no extra reflections on the 00% line (a festoon in Weissenberg photography), while extra reflections were at $\sim4/5$ on the 10%, $\sim1/2$ on the 20%, $\sim1/3$ on the 30%, $\sim1/6$ on the 40% and no extra reflections on the 50% line. Reflections higher than 50% could not be verified.

The existence of an orthorhombic zirconium iodide having cell parameters very similar to α -ZrI, was not a surprise. Such a cell had been obtained from a blade-like crystal found in reaction 21 (19) with \underline{a} = 3.738(1), <u>b</u> = 6.817(2) and <u>c</u> = 14.860(4) Å. Since α -ZrI₂ is isoelectronic and isostructural with β -MoTe, (32), the assumption that this orthorhombic phase might have the closely related orthorhombic WTe, structure (32) was only logical, especially since β -MoTe₂ is known to transform into the WTe, structure at 250 K (40). Therefore, data were collected on the above mentioned cell and averaged in mmm Laue symmetry to yield 371 independent reflections ($2\theta < 50^{\circ}$). The extinctions observed were correct for WTe2 (Pmn2.). Least-squares refinement of the atom positions from the WTe, structure along with isotropic thermal parameters ranging from 0.40-1.0 (in α -ZrI₂, they were 0.65-1.4) resulted in an R = 0.20. Further refinement with anisotropic thermal parameters was attempted; however, the β_{22} 's on all the atoms went negative indicating a problem in the b direction which has not yet been resolved. A Fourier difference synthesis map obtained earlier using isotropic thermal parameters held constant at 1.0 and at an R = 0.20 was flat to $\pm 2e/A^3$ at all points except the atom positions which had 4-6 e/A^3 (probably due to the slightly large thermal parameters). Examination of the data from

the diffractometer revealed that the reflection peaks were broad and the background count high, both being attributable to a poor single crystal. No other single crystals with an orthorhombic cell have been mounted and although a lot of work has been done above 900°C, these crystals were only observed in the gradient reactions 21 and 35 (19). References to other orthorhombic zirconium iodide phases have been made. Daake (11) reported such a phase with the cell parameters $\underline{a} = 3.75$, $\underline{b} = 6.85$ and $\underline{c} = 15.0$ Å obtained from Weissenberg work on a product of one of his "ZrI_{1.8}" reactions. In addition, a series of orthorhombic zirconium diiodides, obtained between 760-780°C, have recently been reported (41) with $\underline{a} = 3.74$, $\underline{b} = 6.93$ and $\underline{c} = 14.85 \times n$ Å, where the n = 24 polytype was studied the most.

The fact that an orthorhombic phase has been found to be twinned with α -ZrI₂ sheds new light upon the powder pattern reported for "ZrI_{1.8}" (11). Figure 6 contains the graphed powder patterns of α -ZrI₂, "ZrI_{1.8}" and an orthorhombic ZrI₂. The cell parameters for the last are those stated above while the atom positions used were from WTe₂ (32). It now appears that the "ZrI_{1.8}" pattern is a mixture containing α -ZrI₂, ZrI₂ (WTe₂), probably intergrown, and a third unknown phase. The two strong doublets in the "ZrI_{1.8}" pattern at \sim 29° and \sim 48° as well as the singlet line at \sim 12° in 20 differ in intensity from the calculated patterns because of known preferred orientation associated with mounting the sample. Three of the lines (those having dots above them) unaccounted for by the calculated patterns are observed to vary independent of the two calculated patterns in Daake's film data. These lines are stronger

Figure 6. The Guinier x-ray powder diffraction patterns for α -ZrI₂ (calc.) ZrI_{1.8} (obs.) and an orthorhombic ZrI₂ (calc. using WTe₂ atom positions). The intensity of the two doublets at \sim 29° and \sim 48° along with the singlet at \sim 12° in 20 in the ZrI_{1.8} graph differ from the patterns above and below because of preferred orientation problems. The three extra lines dotted in the ZrI_{1.8} pattern were observed to vary with composition.

in powder patterns obtained from more reduced samples (I:Zr = 1.8) relative to more oxidized samples (I:Zr = 1.95). If this third phase were a reduced phase, ZrI_{2-x} , it would explain the low stoichiometries of 1.8 - 1.95 found by Daake rather than 2.0.

Finally, it is believed that the orthorhombic phase is formed at relatively high temperatures, above 900°C, while the monoclinic α -ZrI₂ phase is found between 700-825°C. Weissenberg and powder diffraction work has shown all α -ZrI₂ crystals to be twinned with varying amounts of the orthorhombic phase.

PART II. THE TERNARY CsI-Zr-ZrI₄ SYSTEM

No prior work in the CsI-Zr-ZrI4 ternary system had been done. However, the compounds Cs_2ZrCl_6 (14) and $Cs_3Nb_2Cl_9$ (15) were well known and now the analogous zirconium iodides have been synthesized. In addition to these two compounds a third, CsZr₆I₁₄, has been discovered along with evidence for a fourth. As in the binary system, initial reactions in this ternary system were transport-type reactions with ${\circ}150^{\circ}C$ gradients, e.g. 600-750°C or 750-900°C. This provided a wide variety of temperatures to allow the formation of any possible phase. Then when a phase was identified either by a crystal structure or powder pattern, attempts were made to synthesize each phase in larger quantities. Via this approach, virtually every temperature region from 600-975°C has been explored. Above 800°C, temperatures were explored by both small and large gradients, <50°C and 100-200°C, respectively, while below 800°C most gradients were >50°C. The starting materials were always ZrI_{h} , CsI (usually in a 3:1 ratio) and metal. The four new compounds mentioned above along with their apparent formation ranges have been found: Cs_2ZrI_6 ($\sim 600-700^{\circ}C$), $Cs_3Zr_2I_9$ ($\sim 700-900^{\circ}C$), $CsZr_6I_{14}$ ($\sim 900-700^{\circ}C$) 950°C) and "Q" (∿950-1000°C).

 Cs_2ZrI_6 (see Appendix C) was obtained in $\sim 600-700$ °C by reaction 3.

 $(3) 2CsI + ZrI_4 = Cs_2ZrI_6$

The orange Cs₂ZrI₆ crystals grind to a yellow-orange powder.

 $Cs_3 Zr_2 I_9$ was obtained as black crystals, dark green when ground, between $\sim 700-900$ °C from isothermal or gradient reactions of 0.4 g ZrI_4 (0.668 mmoles) and 0.058 g CsI (0.219 mmoles) (an $\sim 3:1$ molar ratio) with excess (2-4 g) zirconium strips. The CsI was generally completely consumed with the remaining ZrI_4 forming binary phases. Typical reaction times were 2-3 weeks.

As is often the case, $CsZr_6I_{14}$ was first obtained in an attempt to synthesize another phase. The original stoichiometry was that shown in reaction 4.

(4)
$$4CsI + 3ZrI_4 + 3Zr_{(p)} \xrightarrow{830^{\circ}C} 2Cs_2Zr_3I_8$$

The proposed product would have $6e/Zr_3$ unit and therefore be isoelectronic and possibly isostructural with $Zn_2Mo_3O_8$ (49). (Hindsight being 20/20 enables one to say that a more reasonable attempt would have utilized NaI or KI since the smaller cation would probably fit better in an iodine octahedral hole relative to the larger Cs⁺ (see FUTURE WORK).) Gem crystals of $CsZr_6I_{14}$ (crystals 1 actually $CsZr_6I_{14}H_x$, see DISCUSSION in $CsZr_6I_{14}$ section) resulted from this reaction along with $Cs_3Zr_2I_9$, ZrI_2 and ZrI_3 .

The balanced equation for the synthesis of $CsZr_{6}I_{14}$ is shown in reaction 5. However, when ZrI_{4} and CsI

(5) $4CsI + 11 Zr + 13 ZrI_4 = 4CsZr_6I_{14}$

were reacted in an \sim 3:1 molar ratio (0.4 g ZrI₄ and 0.058 g CsI) with excess metal (\sim 3 g) for 20 days in a 900-925°C gradient, only \sim 10 mg of $CsZr_6I_{14}$ (nonfibrous rod crystals, crystals 2) were obtained along with $Cs_3Zr_2I_9$, ZrI_2 and ZrI_3 . The problem with synthesizing larger quantities of $CsZr_6I_{14}$ appears to be that the metal surface becomes blocked as in the binary system. Under such circumstances most of the CsI goes into the cesium-rich $Cs_3Zr_2I_9$ compound while the remaining iodine from ZrI_4 forms more reduced binary phases.

The yet unidentified phase "Q" has generally been seen above 920°C. In reaction Cs 11 (19), fur or hair-like crystals (5%) were found in the \sim 970°C region of this \sim 900-980°C gradient reaction. However, similar crystals have also been seen at somewhat lower temperatures, \sim 920°C, in Cs 18 (19), a 900-925°C gradient reaction. In both cases the reactants were 0.4 g ZrI₄, 0.058 g CsI and \sim 3 g Zr strips, while the products were Cs₃Zr₂I₉, CsZr₆I₁₄, ZrI₂ and the fur crystals. Thus far all phase "Q" crystals have been too frail for mounting and no powder pattern has been recorded because of the small quantities.

No other phases have been observed; however, in some ternary reactions the metal strips have been found to be very brittle. This usually occurs above 900°C. In such cases the metal can often be ground into a powder which yields a powder pattern the same as the metal itself. This has not been observed in all ternary reactions containing metal strips above 900°C nor has it been observed in any binary reactions. THE STRUCTURE OF $Cs_3 Zr_2 I_9$ AND A COMPARISON WITH $Cs_3 Y_2 I_9$

INTRODUCTION

The collection of enneahalodimetallates(III), $A_3M_2X_9$, has been growing with the development of new techniques for their preparation (50,51). However, very little is known about iodides of this stoichiometry and little quantitative data, i.e., on their crystal structures, are available. Only $Cs_3Bi_2I_9$ (52,53) and $Cs_3Sb_2I_9$ (53,54) both crystallizing from aqueous solution, have been investigated by means of single crystal x-ray techniques. These have the $Cs_3Cr_2C\ell_9$ -type structure (55) with (<u>chc</u>)₂ stacking of CsI_3 layers (alternative description: ABACBC). All the face-sharing I_6 -octahedra are filled with bismuth (or antimony) to yield 'isolated' confacial bioctahedra $Bi_2I_9^{3-}$ (or $Sb_2I_9^{3-}$). Coulomb repulsion between the tripositive metal atoms in these and other $M_2X_9^{3-}$ groups has been said (56) to lead to enlarged M-X distances and angles at the bridging anions compared with those to the terminal ones.

At first glance the synthesis of the title compound, $Cs_3 Zr_2 I_9$, may appear to be of no great significance since literally hundreds of these $A_3 M_2 X_9$ phases are known. However, the synthesis and characterization of $Cs_3 Zr_2 I_9$ along with $Cs_3 Y_2 I_9$ provides a view of a new trend: what happens when one electron per metal is added to a series $Cs_3 M_2 I_9$ to allow the formation of a metal-bonded species. A somewhat similar series has been studied in $Cs_3 Cr_2 Cl_9$, $Cs_3 Mo_2 Cl_9$ (57), $K_3 W_2 Cl_9$ (58), where the principal quantum number of the transition metal changes while the number of valence electrons (d³) is held constant. Here the metal-metal distance within the bioctahedra was found to shorten from 3.12 (Cr) to 2.41 Å (W), indicating the presence of substantial metal-metal bonding in the latter case. Therefore a comparison of $Cs_3Zr_2I_9$ with $Cs_3Y_2I_9$, where the M³⁺ ions have a 4d¹ and 4d⁰ configuration, respectively, was of interest and will be considered.

DATA COLLECTION

All reflection data within a sphere defined by $2\theta \leq 60^{\circ}$ in the HKL, \overline{HKL} and \overline{HKL} octants were measured. The 3826 observed reflections (I > $3\sigma(I)$) were corrected for Lorentz-polarization effects and averaged to 623 independent reflections. The extinction $hh2\overline{h}\ell$ with ℓ odd was observed from which the trigonal space group P31c was assumed. This was later converted to the hexagonal space group P6₃/mmc when the positional parameters were observed to have the higher symmetry.

STRUCTURE DETERMINATION

One iodine and the zirconium position were obtained from a Patterson map and the remaining atom positions were located from a Fourier synthesis map. After full-matrix least-squares refinement of positional and isotropic thermal parameters R was 0.15. Refinement with anisotropic thermal parameters lowered this to a R = 0.085 and R_w = 0.158. The diffraction data were then reweighted in groups sorted on F_o to give final residuals R = 0.083 and R_w = 0.075, where the shift/error values were ≤ 0.001 for all parameters. A Fourier difference map computed at this point was flat to $\leq \pm 2e/R^3$ at the atoms and $\leq \pm 1e/R^3$ elsewhere.

DESCRIPTION OF THE STRUCTURE

The compound $Cs_3Zr_2I_9$ crystallizes in space group $P6_3/mmc$ with two formula units per cell and is isotypic with $Cs_3Cr_2Cl_9$ (55). Final positional and thermal parameters are given in Table V. Distances and angles are listed in Table VI while the observed and calculated structure factors are available in Appendix D. The lattice constants determined from least-squares refinement of tuned 20 values from the data crystal are <u>a</u> = 8.269(1), <u>c</u> = 19.908(3) Å, <u>c/a</u> = 2.408, and the molar volume is 335.0 cm³.

In this structure, layers of close-packing atoms of the composition CsI_3 are stacked in the <u>c</u> lattice direction with relative ordering ABACBC or, alternatively, $(\underline{chc})_2$. Two-thirds of the octahedral intersticies are filled with M^{3+} in pairs so that a confacial bioctahedron $\operatorname{Zr}_2\operatorname{I}_9^{3-}$ is formed, as shown in Figure 7. The structure is closely related to that of hexagonal BaTiO₃ (59) or CsCdCl₃ (60); in the latter all octahedral sites between CsCl₃²⁻ layers stacked in the same manner are occupied by Cd²⁺ to generate zig-zag chains of CdCl₆ octahedra in which single octahedra share corners with confacial bioctahedra. In the Cs₃Cr₂Cl₉-type defect structure the single octahedral sites are left vacant.

Table V. Crystallographic data and atom parameters for Cs₃Zr₂I₉.

Composition: $Cs_3Zr_2I_9$, Z = 2

Cell: hexagonal, P63/mmc (No.

Lattice parameters: $\underline{a} = 8.269(1)$ Å, $\underline{c} = 19.908(3)$ Å

Refinement: R = 0.087, $R_w = 0.075$ (623 reflections, $2\theta \le 60^\circ$)

Atom	Wyckoff Notation	x	у	Z	^B 11	^B 22	^B 33	^B 23
Csl	4f	1/3	2/3	0.0699(1)	4.28(6)	^B 11	2.78(7)	0
Cs2	2ъ	0	0	1/4	3.60(7)	^B 11	2.76(9)	0
Zr	4 f	2/3	1/3	0.17128(9)	1.97(5)	^B 11	1.45(6)	0
11	12k	0.83187(8)	2x	0.08987(4)	3.82(4)	2.36(4)	2.46(4)	0.71(3)
12	6h	0.4949(1)	2x	1/4	4.36(6)	2.75(6)	2.50(5)	0

^aT = exp[4⁻¹(B₁₁h²a^{*2} + B₂₂k²b^{*2} + B₃₃k²c^{*2} + 2B₁₂hka^{*}b^{*} + 2B₁₃hka^{*}c^{*} + 2B₂₃kkb^{*}c^{*})] B₁₂ = B₂₂/2; B₁₃ = B₂₃/2.

Cs3Zr219		Cs ₃ Y ₂ I ₉
3.134(4)	Mc-Mc	4.052(9)
2.828(1)	Mc-I1A	2.901(2)
2.917(1)	Mc-12 <u>B</u>	3.126(3)
4.098(1)	11 <u>A</u> -11 <u>A</u>	4.108(1)
4.313(1)	11 <u>A</u> -11 <u>C</u>	4.298(1)
3.999(1)	11 <u>A</u> -12 <u>B</u>	4.285(3)
4.008(1)	12 <u>B</u> -12 <u>B</u>	4.122(1)
4.154(1)	Csl <u>A</u> -Il <u>A</u>	4.212(1)
3.964(3)	Csl <u>A</u> -I1 <u>C</u>	4.140(4)
4.268(3)	Cs1 <u>A</u> -12 <u>B</u>	4.533(4)
4.135(1)	Cs2 <u>B</u> -I2 <u>B</u>	4.203(1)
3.995(1)	Cs2 <u>B</u> -I1 <u>A</u>	4.251(2)
91.21(5)	11 <u>A-Mc-11A</u>	95.6(1)
87.47(3)	11 <u>A-Mc</u> -12 <u>B</u>	90.58(3)
93.84(5)	12 <u>B-Mc</u> -12 <u>B</u> (α)	82.52(9)
64.99(6)	$Mc-12B-Mc(\beta)$	80.8(1)

Table VI. Bond Distances (Å) and Angles (deg.) in $Cs_3Zr_2I_9$ and $Cs_3Y_2I_9$.^a

^aItalicized letters refer to the different layers in the stacking sequence: \Box AcBcA \Box CaBaC \Box ···(<u>a</u>, <u>c</u>: M; <u>A</u>, <u>B</u>, <u>C</u>: CsI₃-layers).

Figure 7. Perspective views of the Y2I9³⁻ (left) and Zr2I9³⁻ (right) groups in their Cs3M2I9 salts. Drawn with the same linear scale, view distance and 50% probability thermal ellipsoids.

DISCUSSION

The differences in configuration between $Cs_3Zr_2I_9$ and $Cs_3Y_2I_9$ (61) are very dramatic and can easily be seen in Figure 7. These are ascribed entirely to the formation of a zirconium-zirconium bond in the former through overlap of two d_{2}^{1} orbitals through the shared face. This feature is reflected in many differences in the two structures even though they are formally isotypic. For example, the lattice constants themselves would ordinarily show a small and more or less uniform increase with decreasing atomic number in such a homologous series, but the 6.4% expansion in the <u>c</u> axis, 19.908 Å (Zr) to 21.280 Å (Y), parallel to the principal axis of the $M_{2}X_{q}$ bioctahedron on transition from zirconium to yttrium versus only a 1.6% increase in <u>a</u>, 8.269 Å (Zr) to 8.406 Å (Y), within the layers is noteworthy. Similar increases in molar volume (9.5%) and the c/a ratio (4.9%) are also diagnostic of the change in bonding (52). The marked differences of these compounds are also carried over to a macroscopic scale where the zirconium compound forms black crystals which grind to yield a dark green powder, while the yttrium compound is found as clear crystals. This is consistent with the metal-metal bonding in zirconium and the lack of the same in yttrium.

However, the most direct evidence for the change in bonding is also the most striking, a lengthening of the metal-metal distance across the shared face from 3.134(4) Å (Zr) to 4.052(9) Å (Y), a 22.6% increase. Such a large change naturally affects not only other distances and

angles in the $M_2I_9^{3^-}$ bioctahedron but also positions of neighboring atoms as well. Internal angles defined by the metal atoms and I2 atoms in the shared face are affected most, a 15.8° increase from 65.0 to 80.8° in the angle β at the bridging iodine (M-I2-M) and an 11.3° decrease from 93.8 to 82.5° in the internal angle α at the metal (I2-M-I2) (see Figure 7). Small changes also occur in the external angles to atoms II and in the M-I distances.

In one sense the magnitude of the contraction in the M-M distances seems very remarkable since it is 0.2 Å greater than that accompanying the transition from the paramagnetic $Cs_3Cr_2Cl_9$ to the diamagnetic $K_3W_2Cl_9$ and the formation of a triple bond. On the other hand the percentage decrease is nearly the same. But further interpretation and comparison with the latter series becomes complex owing to substantial changes in both halide and metal bonding radii let alone because of any restraints provided by the close packed M^IX_3 matrix.

A more complete and indepth look at the comparison of these two compounds can be found in a recent publication (61).
THE SYNTHESIS AND CHARACTERIZATION OF THE FIRST TERNARY ZIRCONIUM IODIDE CLUSTER

CsZr₆I₁₄

INTRODUCTION

Ternary cluster species have been known for sometime, examples being $Zn_2Mo_30_8$ (49), $CsNb_4X_{11}$ (X = Cl, Br) (62), $K_4Nb_6Cl_{18}$ (63), and $Mg_3Nb_60_{11}$ (64). Until 1971 few other examples were known, then the discovery of the remarkable superconductivity properties of the Chervel phases (65) caused this list to literally explode with different combinations of the M'Mo₆X₈ (X = S, Se, Te) formula. In addition to the Chervel phases other ternary clusters have recently been synthesized such as NaMo₄0₆ (66), $CsNb_6I_{11}$ (67) and now $CsZr_6I_{14}$.

In the CsI-Zr-ZrI₄ ternary system no other cluster compounds are known to date and no other $M'M_6X_{14}$ phases have been reported. However, the analogous binary clusters Nb_6Cl_{14} (68) and Ta_6I_{14} (69) are known. The structural aspects of $CsZr_6I_{14}$ as well as its supposed hydride, $CsZr_6I_{14}H_x$, will be discussed. In addition, a comparison of these ternary $M'M_6X_{14}$ clusters will be made with the closely related binary M_6X_{14} clusters.

DATA COLLECTION

Data were collected on two different crystals (see the Discussion section). Data on crystal 1 were originally collected on a nonstandard monoclinic cell having $\underline{a} = 4.086(2)$, $\underline{b} = 3.973(2)$, $\underline{c} = 12.962(3)$ Å and $\gamma = 119.1(4)^{\circ}$. The space group P2₁/m was originally chosen (\underline{c} unique) since the extinction 00 ℓ ($\ell \neq 2n$) was observed and a centric cell was predicted by an HPR plot. Because of the shortness of the \underline{a} and \underline{b} axes an iodine atom was placed at the origin.

The location of a second iodine in a Fourier electron density map indicated an acentric rather than a centric cell and therefore the space group $P2_1$ was selected and least-squares refinement of the two iodines resulted in an R equal to 0.21. The iodines were now observed to stack in an ABAC sequence along the long c axis. Refinement of any possible zirconium positions increased R and it was therefore presumed that this cell was probably a subcell corresponding only to the iodine atoms which have the greater diffracting power. Reexamination of the indexing step revealed extra weak spots in the b axial photo which would increase b by a factor of four. When these new reflections were input along with the original set of reflections and reindexed, a new cell was obtained. Two octants of data, HKL and HKL, were collected $(2\theta \le 60^\circ)$ on the new orthorhombic cell with <u>a</u> = 14.275(4), <u>b</u> = 15.880(4) and $\underline{c} = 12.953(4)$ Å, which were obtained via LATT by tuning on the 20 values of 14 reflections (28 \leq 20 \leq 34°). After 1300 reflections had been checked, the C-centering restriction, $h + k \neq 2n$, was established

and added. The 3208 observed reflections were reduced and averaged in Laue symmetry mmm yielding 1640 independent reflections. Initially the space group C222 was used; this was later replaced with the correct space group Ccmb upon the discovery of the extinctions 0kl ($l \neq 2n$) and hk0 ($k \neq 2n$). Ccmb is a nonstandard setting of Cmca (No. 64).

All data in the octants HKL and $\overline{\text{HKL}}$ were collected $(20 \le 50^{\circ})$ on crystal 2. This second orthorhombic cell had <u>a</u> = 14.300(3), <u>b</u> = 15.833(2) and <u>c</u> = 12.951(2) Å, again obtained via LATT by tuning on the 20 values of 14 reflections $(28 \le 20 \le 47^{\circ})$. The 2263 observed reflections were reduced and averaged the same as crystal 1 yielding 1169 independent reflections.

STRUCTURE DETERMINATION

A value for R of 0.21 had been obtained from the refinement of two iodine atoms in the old (O) monoclinic cell for crystal 1. When the new (N) orthorhombic cell was found, an examination of the orientation matrices for the two cells, see Table VII, indicated that \dot{c}_0^* and \dot{c}_N^* were the same except opposite in direction. Since β_0 is the only non-90° angle, the angles between c_0^* and a_0^* , c_0^* and b_0^* as well as c_N^* and a_N^* , c_N^* and b_N^* all must be 90°. Therefore, a_0^* , b_0^* , a_N^* and b_N^* all lie in the same plane since c_0^* and c_N^* differ only in direction. By using the equation $e \cdot f = |e||f| \cos \theta$, the angles between a_0^* and a_N^* as well as a_0^* and b_N^* were determined and found to be 0° and 90°, respectively. Therefore following the rules for converting reciprocal axes to real axes, b_0 and b_N were found to lie in the same direction; however, they had different magnitudes. In the same manner $a_{_{\rm N}}$ was found to be perpendicular to both c_N and b_N but not to lie along a_0 . From this correlation between the old and new cells, six independent iodines were refined in the new orthorhombic cell (data set 1) and the zirconium positions located. Refinement of the six iodines and two zirconiums yielded an R equal to 0.25. At this point examination of the atom locations indicated, via chemical common sense, that one of the supposed iodines was truly a cesium. This was drawn from the fact that a cesium completely surrounded by iodines is more reasonable than an iodine in the same position. Further refinement yielded a residual equal to 0.12 using isotropic temperature factors.

Table VII.	Orientation matrices	for	the o	ld monoclini	c and	new
•	orthorhombic cells.					•

	<u>Old Monoclinic</u>	
*	b	c
-0.1596	0.028915	0.05178
0.15763	0.28666	-0.00383
0.16140	-0.00704	0.05722

New Orthorhombic

N			
-0.04160	0.027974	-0.051524	
0.039194	0.051958	0.003892	
0.040274	-0.021606	-0.057125	

.

After the data sets from crystals 1 and 2 were corrected for absorption via a ϕ -scan program (70) and reweighted in fifty groups sorted on F_o , final R's and R_w 's with anisotropic temperature factors were R = 0.090, 0.062 and R_w = 0.110, 0.083, respectively. The structure of crystal 2 was refined with the atom positions from crystal 1. The final difference map for crystal 1 was flat to $\leq 1e/A^3$, while the same for crystal 2 had +2 and $+3e/A^3$ at the cesium and iodine positions, respectively, and $\leq 1e/A^3$ elsewhere. However, both clusters were observed to have a peak of $\sim 5e/A^3$ in the center of the zirconium cluster.

DESCRIPTION OF THE STRUCTURE

Final positional, thermal parameters and cell constants for $CsZr_6I_{14}$ crystal 1 and 2 are listed in Table VIII, and important distances and angles in Table IX, while structure factors are in Appendix E.

Both $Zr_{6}I_{12}$ and $Zr_{6}I_{14}$ are based on $M_{6}X_{12}$ clusters and a comparison of Figures 3 and 8 will show that they differ only in how the iodine atoms are shared between clusters. The exact sharing of iodines in $\operatorname{Zr}_{6}I_{12}$, as stated earlier, is $\operatorname{Zr}_{6}I_{6}^{i}I_{6\cdot 2/3}^{i-a}I_{6\cdot 1/3}^{a-i}$ while in $\operatorname{Zr}_{6}I_{14}^{-}$ it is $2r_{6}I_{10}I_{2\cdot2/3}I_{2\cdot1/3}I_{4\cdot1/2}$. The latter can be seen in Figure 8 by the coding of the iodines. The ten solid iodine atoms are inner (i) iodines bonded twice, only to the cluster shown. The two striped iodine atoms are bonded twice to the cluster shown but also once to neighboring clusters and are inner-outer (i-a) iodines. The two spotted iodine atoms bond once to the cluster shown and twice to neighboring clusters and are outer-inner (a-i) iodines, and finally the four open iodine atoms bond once to the cluster shown and once to neighboring clusters and are outer-outer (a-a) iodines. As seen in $\operatorname{Zr}_6 \operatorname{I}_{12}$ the Zr-I bond lengths in CsZr₆I₁₄ follow this bonding scheme where the Zr-Iⁱ, Zr-I^{i-a}, Zr-I^{a-a} and Zr-I^{a-1} distances increase from 2.862-2.865, 2.923, 3.148 to 3.408 Å, respectively.

. 74

14010		carrograp		³²¹ 6 ¹ 14'	crystars	r and z.			
	Composition:	CsZr ₆ I	4 ^H x, CsZr ₆ I ₁₄ ,	Z = 4	-	· · · ·	•		
· · ·	Cell: Ortho	rhombic, (Ccmb (nonstand	ard setti	ng No. 64) ·			
	•		(1)	• • • •	(2)		Δ	an An an	
	Lattice Para	meters: a	$\underline{a} = 14.275(4),$ $\underline{b} = 15.880(4),$ $\underline{c} = 12.953(4),$	a b c	= 14.300(= 15.833(= 12.951(3) 2) 2)	.025(5) 047(5) 002(5)		· . · ·
· .]	R = 0.090 $R_{w} = 0.110$	R R V	= 0.062 = 0.083		- · · · · ·	• • •	
		- 	1640 reflectio 2θ < 59.9°	ns, 11	69 reflec 2θ < 49.	tions, 9°			
	x	у	Z	B ₁₁ ^a	^B 22	^B 33	^B 12	^B 13	^B 23
Cryst	tal 1, CsZr ₆ I	$14^{\rm H}$ x							
11	0.09821(8)	0.12549(7) 0.7509(1)	1.40(5)	1.56(5)	1.21(4)	0.11(3)	-0.031(3)	0.39(3)
12	0.25619(8)	0.12574(7) 0.9936(1)	1.26(4)	1.65(5)	1.28(5)	0.32(3)	0.20(3)	0.29(3)
13	0.6530(1)	0.25	0.25	1.53(6)	1.51(6)	1.39(6)	0.0	0.0	-0.40(4)
14	0.1591(1)	0.0	0.2377(1)	1.53(6)	1.23(6)	1.22(6)	0.0	0.38(4)	0.0
15	0.0	0.247(1)	0.0	1.80(6)	1.17(5)	1.21(6)	0.0	-0.27(5)	0.0
Cs	0.0	0.0	0.0	5.6(2)	3.9(2)	3.2(2)	0.0	-0.5(1)	0.0

Table VIII. Crystallographic data for CsZr₆I₁₄, crystals 1 and 2.

Zrl	0.0660(1)	0.3920(1)	0.1101(1)	1.20(6)	1.64(6)	1.08(6)	-0.22(5)	0.27(5)	-0.23(5)
Zr2	0.3631(2)	0.0	0.1009(2)	1.78(9)	1.13(8)	1.21(9)	0.0	-0.44(7)	0.0
Crystal 2, CsZr ₆ I ₁₄								•	
11	0.08991(9)	0.12535(6)	0.74989(8)	1.51(6)	1.34(6)	1.30(6)	0.10(3)	-0.27(3)	-0.41(3)
12	0.25726(7)	0.12574(6)	0.99357(8)	1.26(5)	1.40(6)	1.38(5)	0.32(3)	0.17(3)	0.28(3)
13	0.6512(1)	0.25	0.25	1.54(7)	1.24(7)	1.62(6)	0.0	0.0	-0.40(4)
14	0.1581(1)	0.0	0.2382(1)	1.69(7)	1.10(7)	1.31(6)	0.0	0.39(4)	0.0
15	0.0	0.24730(8)	0.0	1.92(7)	0.84(6)	1.40(6)	0.0	-0.28(5)	0.0
Cs	0.0	0.0	0.0	4.9(2)	3.4(1)	3.0(1)	0.0	-0.4(1)	0.0
Zr1	0.0643(1)	0.39420(9)	0.1078(1)	1.17(6)	0.99(6)	1.05(6)	-0.08(4)	0.06(4)	-0.09(4)
Zr2	0.3668(1)	0.0	0.0979(1)	1.29(8)	1.29(8)	1.13(7)	0.0	-0.19(6)	0.0

^aT = exp[(-1/4(B₁₁h²a^{*2} + B₂₂k²b^{*2} + B₃₃k²c^{*2} + 2B₁₂hka^{*}b^{*} + 2B₁₃hka^{*}c^{*} + 2B₂₃kkb^{*}c^{*})].

Table IX. Selected bond distances (A) and angles (deg.)

	Dista	nces
	CsZr ₆ I ₁₄ ^H x	CsZr ₆ I ₁₄
	(Crystal 1)	(Crystal 2)
Zr-Zr intralayer		
Zrl ^b - Zrl ^c	3.430(4)	3.350(3)
Zrl - Zr2 ^a	3.368(3)	3.286(2)
Zr-Zr interlayer		
Zrl - Zrl ^c	3.418(4)	3.343(3)
Zrl - Zr2 ^d	3.382(3)	3.298(2)
Zrl - Zrl ^b	4.842(4)	4.733(3)
Zr2 ^a - Zr2 ^d	4.704(2)	4.577(4)
$\underline{Zr - I^{i}}$		
Z r 1 - I5	2.862(2)	2.864(2)
Zrl ^c - Il ^e	2.883(2)	2.888(2)
Zrl ^b - 12 ^e	2.886(2)	2.887(2)
Zr2 ^d - I1 ^e	2.866(2)	2.863(2)
$2r2^{a} - 12^{a}$	2.872(2)	2.871(2)

Table IX (cont.)

	Distanc	ces
	^{CsZr} 6 ^I 14 ^H x (Crystal 1)	^{CsZr} 6 ^I 14 (Crystal 2)
$2r - 1^{1-a}$		
Zrl ^c - I4 ^g	2.932(2)	2.930 (2)
<u>Zr - I^{a-1}</u>		
Zr2 ^d – I4 ^d	3.409(3)	3.494(3)
$Zr - I^{a-a}$		
Zrl ^b - 13 ^f	3.149(2)	3.186(2)
and the second		

	Angles					
$\frac{Zr - I^{a-a} - Zr}{b} = f$	· .					
$Zr1^{D} - 13^{1} - Zr1$	133.48(9)	134.08(7)				
(adjacent cluster)	• .					
	•	•				
$\underline{Zr - I^{i} - Zr}$		•				
$Zr1 - I5 - Zr1^{c}$	73,32(8)	71.41(6)				
$2r1^{c} - 11^{e} - 2r2^{d}$	71.73(7)	69.68(5)				
$2r1^{b} - 12^{a} - 2r2^{a}$	71.95(7)	69.88(5)				
$2r - 1^{i-a} - 2r$						
$Zr1^{b} - 14^{g} - Zr1^{c}$	71.62(8)	69.74(6)				

Figure 8. The Zr_6I_{14} cluster (crystal 2) with the zirconium atoms connected by heavy lines. There is an inversion center at the center of the cluster and a mirror plane parallel to the paper which contains zirconium atoms 2^a and 2^d and iodine atoms 4^d and 4^g . The iodine atoms are coded according to their bonding between clusters: solid are inner (i), striped are inner-outer (i-a), dotted are outer-inner (a-i) and open are outer-outer (a-a). The letters in atom identification refer to symmetry operations, Table IX.

DISCUSSION

The Zr-Zr distances were expected to increase upon going from Zr₆I₁₂ (12 e/Zr_6) to $\text{Zr}_6 I_{14}$ (11e/M₆) since there are fewer electrons for metalmetal bonding. However, the observed increase from 3.194 - 3.204 Å in $2r_6I_{12}$ to 3.368 - 3.430 Å in $2r_6I_{14}$, crystal 1, was much larger than expected. This is especially evident when compared with a somewhat analogous transition from $CsNb_{6}I_{11}$ (20 e/M₆) (67) to $Nb_{6}I_{11}$ (19 e/M₆) (71) where the average Nb-Nb distance increases a mere 0.025 $\overset{\text{O}}{\text{A}}$ from 2.825(2) to 2.850(3) Å. Therefore, to verify the long Zr-Zr distances in crystal 1, data were collected on a second crystal. Several differences between crystal 1 and 2 were found but the most striking was that the Zr-Zr distances were ~ 0.08 Å longer in crystal 1 than in 2, 3.368 - 3.430 and 3.286 - 3.350 Å, respectively. The longer metal distances in crystal 1 are presumed to be indirect evidence for the presence of hydrogen in crystal 1 (CsZr₆I₁₄H_x) relative to crystal 2 (CsZr₆I₁₄). Crystal 1 was obtained from a reaction of CsI, ZrI_A and metal powder while crystal 2 came from a similar reaction except metal strips were used. The powdered metal was obtained via the metal hydride, $\sim ZrH_{1,4}$, made at $\sim 450^{\circ}C$ from the direct reaction of hydrogen and metal. The brittle hydride was then ground into a powder and decomposed under a dynamic vacuum ($<10^{-4}$ Torr) at 800°C; the H:Zr atomic ratio should be <0.01 (72).

In Nb₆I₁₁D the deuterium is known, via a neutron study (73), to lie in the middle of the niobium cluster. Therefore, in the similar clusters $CsNb_6I_{11}H$ (74) and now $CsZr_6I_{14}H_x$ the hydrogen is presumed to occupy a

similar position. The three systems Nb₆I₁₁-Nb₆I₁₁H, CsNb₆I₁₁-CsNb₆I₁₁H and CsZr₆I₁₄-CsZr₆I₁₄H show similar trends. All three show increases in the unit cell volumes, though quite small, of 0.2, 0.3 and 0.1%, respectively, with the uptake of hydrogen. In addition, the M-M distances in the latter two also increase with the uptake of hydrogen. In CsNb₆I₁₁ (67) to CsNb₆I₁₁H (72), the Nb-Nb distances increase from 2.77(2), 2.795(2) and 2.940(2) to 2.817(2), 2.828(2) and 2.971(2) Å, amounting to 1.2, 1.1 and 1.7% increases. The increases in the Zr-Zr distances on going from $CsZr_6I_{14}$ to $CsZr_6I_{14}H_x$ are approximately twice as large, 3.286(2), 3.298(2), 3.343(3) and 3.350(3) to 3.368(3), 3.382(3), 3.418(4) and 3.430(4) A which are 2.4, 2.5, 2.2 and 2.3% increases. The larger increases in the M-M distances in the case of the zirconium cluster can be attributed, at least in part, to the fact that the electron presumably removed by H is somewhat more bonding than in the niobium cluster, since the zirconium cluster contains only eleven electrons while the niobium cluster contains twenty electrons.

Since $CsZr_6T_{14}$ contains an odd number of electrons per cluster (11 e/Zr₆) it presumably will be paramagnetic with at least one unpaired electron. Because only small quantities of this phase have been obtained esr measurements were carried out on two single crystals. The crystals were conservatively estimated as 0.1 mm cubes which corresponds to $\sim 10^{15}$ spins/crystal. A Bruker (ER 220 PSR) spectrometer interfaced with a Nicolet 1170 signal averager were used to make measurements at both room and liquid nitrogen temperatures. A conservative estimate was that 10^{11} spins or more should be detectable. However, no signal was observed even at liquid nitrogen temperatures. The exact reason as to why a signal was not seen is not known, but it may be that this phase has a fast relaxation causing a broad signal so that even lower temperatures are required for detection. At the same time it may also be that the orientations of the single crystals produces a broad and perhaps anisotropic signal. In any case, when larger quantities of this phase are obtained, esr measurements should be repeated.

This Zr_6I_{14} cluster is not the only M_6X_{14} cluster known, there are two binary analogs, Nb_6Cl_{14} (68) and Ta_6I_{14} (69). All three crystallize in the same space group Cmca (No. 64). However, $2r_6I_{14}$ was solved in Ccmb while the niobium and tantalum clusters were solved in Bbam. If $ec{b}$ and $ec{c}$ are interchanged in the niobium and tantalum structures and the origin shifted by 1/2 1/2, these structures may be compared directly. Figure 9 shows a 110 projection of the $CsZr_{6}I_{14}$ structure at <u>c</u> approximately equal to $\frac{1}{2}$. The iodines (I¹) about the waist of the clusters lie at <u>c</u> approximately equal to $\frac{1}{2}$ while metal triangles lie just above and below. The significance of this projection is that the cesium cation lies at $\frac{1}{2}$ 0 $\frac{1}{2}$ and 0 $\frac{1}{2}$ $\frac{1}{2}$. This position is vacant in the Nb₆Cl₁₄ and Ta₆I₁₄ compounds and was not recognized by the earlier workers. It certainly seems feasible that the hole in the binary compounds could be filled with a cation, e.g. cesium, rubidium or potassium, thereby reducing the clusters. In addition, the cesium in CsZr₆I₁₄ or the hole in the binary clusters might also be replaced with a barium or lanthanum cation to reduce the clusters even further (see FUTURE WORK).

Figure 9. A (001) section of the $CsZr_6I_{14}$ structure (crystal 2) at $c \ 2 \ 2$. Only the (inner) iodines which lie about the waist of a metal cluster are shown. The cesium atoms at $\frac{1}{2}00$ and $0\frac{1}{2}0$ lie within an octahedron of metal clusters.

FUTURE WORK

Concluding Remarks

This investigation has had at least a two-fold significance: the development of general information on transition metal halide chemistry and the consideration as to whether any of the new compounds found might have a bearing on SCC of zircaloy. The first has been achieved with the synthesis and characterization of the new compounds mentioned in the foregoing sections. The second is in many ways difficult since the research was directed more along the lines of chemical synthesis and characterization of new compounds rather than metallurgical correlations of these new compounds to SCC. However, some general comments can be made.

First of all, it is now considered fact that SCC of zircaloy is caused by a zirconium iodide. The question then is, which zirconium iodide? A ZrCl or ZrBr type would seem to be the prime candidate, mainly because of its easy basal cleavage (75). Unfortunately no such zirconium iodide has been positively identified. However, a zirconium monoiodide, of unknown structure, has reportedly been obtained from the disproportionation of a more oxidized phase, $ZrI_{2.4}$, in a 425-140°C gradient (76). A product analyzed as $ZrI_{1.2\pm0.1}$ remained in the 425°C region while ZrI_4 was deposited in the 140°C zone; an x-ray powder pattern for this phase has also been reported which does not correspond to the metal or any known binary phase. In any case, the next best candidate, at this time, would seem to be α -ZrI₂ which also has a layered structure with easy basal cleavage. Along these lines a study has been suggested which would

use single crystals of zirconium to grow ZrCl, ZrBr and α -ZrI₂ epitaxially. The results are hoped to lend support to a theory (75) that such phases may indeed be involved in SCC of zircaloy.

Secondly, although the required conditions (temperature, pressure of iodine, required stress, etc.) needed for iodine-induced SCC have been identified, no one has tried to isolate these phases. If contact with air and moisture could be avoided, studies such as SEM, XPS, and xray powder diffraction could be very informative especially in light of the new phases reported in this work.

Finally, though some work has been done to learn whether cesium may influence SCC more work may be needed, especially since zirconium strips have been observed to become brittle in some cesium ternary reactions above 900°C; this has never been observed in binary iodide reactions.

<u>Binary work</u>. Perhaps the most frustrating aspects of this work have been the lack of larger quantities of several of the new phases and the fact that a zirconium iodide more reduced than ZrI_2 has not been found, especially since ZrCl (17) and ZrBr (26) are well known. One reason for this may be that too much "heat and beat" chemistry has been done in the past. Recent work in the La-LaCl₃ system (77) has shown that at relatively low temperatures (750-815°C) solid-solid reactions are a practical way to obtain reduced phases such as LaCl in very large (\sim 100%) yields. Earlier such phases had only been obtained at higher temperatures. Therefore perhaps more work should be done between 700-850°C with either powdered metal or very large (10-20 g) quantities of metal

strips. The large quantities of metal are needed to overcome blockage of the surface which appears to prevent complete reaction.

If larger quantities of $\alpha - 2rI_2$ and $\beta - 2rI_2$ could be obtained, studies such as XPS-UPS measurements along with other interesting chemistry could be done. It has been suggested that $\beta - 2rI_2$ might be soluble in a solvent such as pyridine or acetonitrile. If true, the solution would presumably contain discrete $2r_6I_{12}$ clusters with solvent molecules most likely occupying the exo-positions about the clusters. If indeed the cluster were retained in solution, they perhaps could be reduced and isolated as a cation-anion pair, e.g., $M^+2r_6I_{12}^-$. Likewise, if this were possible with the binary cluster it may also be possible with the ternary cluster $CsZr_6I_{14}$, which would allow reduction in solution rather than in the solid state (see future ternary work section). In addition, larger quantities of $\beta - 2rI_2$ would allow hydrogen absorption studies. The analogous $2r_6Cl_{12}$ and $2r_6Br_{12}$ clusters (21) are known not to take-up hydrogen yet $CsZr_6I_{14}$ is thought to form $CsZr_6I_{14}H_x$.

Larger quantities of α -ZrI₂ would allow an investigation into the transition from a distorted CdI₂-type structure (α -ZrI₂) to an undistorted or normal CdI₂ structure. Such a transition for α -ZrI₂ has been proven to be theoretically possible via a Landau second order phase transition (38,78). An experimental verification of this transition would, as has other work (39), lend support for studies into other systems where chemistry might first be predicted by theory prior to laboratory experiments.

86.

An orthorhombic phase is now known to be involved in a twinning mechanism with α -ZrI₂ (see ZrI_{1.8} RESULTS). Crystals of this phase were seen in reactions 21 and 35 (19), with a pseudo single crystal mounted from the first. In both reactions ~ 0.5 g of ZrI₄ and a long metal strip (~ 13 cm, weighing ~ 2.5 g) were heated in an $\sim 850-950^{\circ}$ C gradient. The blade crystals, often observed to be forked at one or both ends (due to twinning), were obtained in only small quantities in the hot end of the tube. Future attempts to produce larger yields of this phase should use larger quantities of metal and/or smaller gradients (900-950°C) with 1-2 month reaction times to allow larger crystals to form.

Work in this binary system has lacked in the fact that surfacesensitive techniques have not been employed in an attempt to identify phases which may exist in perhaps only a few monolayers. Techniques such as SEM, UPS-XPS, Auger and microprobe should be very helpful, especially in identification of zirconium iodides which might be important in the SCC of zircaloy.

<u>Ternary work</u>. A question which comes to mind is "why are extended chain structures such as Y_4Cl_6 (79), Sc_5Cl_8 (27), Sc_7Cl_{10} (80), etc., so prevalent just to the left of group IV and isolated clusters such as Nb_3I_8 (81) and Nb_6I_{11} (71) just to the right, yet neither are known for zirconium?" (excluding Zr_6X_{12} (20,21) and ZrX (17,26)). One explanation may be that the correct M/X ratio has not or cannot be obtained in the binary. However, in light of all the work done in the $Zr-ZrCl_4$, $Zr-ZrBr_4$ and $Zr-ZrI_4$ systems, it seems somewhat hard to believe that at least one

of these three doesn't have the correct M/X ratio. Therefore, perhaps the problem lies in electron count rather than M/X ratio. One such example is $CsZr_6I_{14}$. The M_6X_{14} structure is known for the binary compounds Nb_6Cl_{14} (68) and Ta_6I_{14} (69), yet no such binary zirconium halide cluster is known. However, when one extra electron is added to the system CsZr₆I₁₄ is formed. Therefore, perhaps a whole host of new ternary zirconium halides could be synthesized, e.g., MZr₆X₁₂, M₂Zr₃X₈, MZr_6X_{14} , MZr_4X_6 , MZr_8X_{16} , etc. (where M = Na, K, Cs, Ba, La, etc.), if the correct electron count can be achieved. Then if these new compounds could be made, attempts to vary the number of electrons could be carried out, e.g., CsZr₆I₁₄, BaZr₆I₁₄ and LaZr₆I₁₄. If the proposed structures are studied some general observations can be made. In order to make $M_2Zr_3X_8$ (Zn₂Mo₃0₈ (49)) or MZr₆X₁₂ (Sc₇Cl₁₂ (20)), M must be small enough to fit in between the halide layers in octahedral and/or tetrahedral holes; therefore Na or K would be a good choice. In contrast in MZr_4X_6 $(NaMo_4O_6$ (66)) and MZr_8X_{16} (Ba_{1,13}Mo₈O₁₆ (82)), M would lie in channels through the structure and the size may not be as critical. In MZr_6X_{14} the hole is within the halide layer and therefore the best M would be one approximately the same size as X. From this point of view and in recognition of the recently discovered compounds CsNb₆I₁₁ (67), CsZr₆I₁₄, $NaMo_40_6$ (66) and $Ba_{1.13}Mo_80_{16}$ (82), the outlook for ternary zirconium halides as well as general ternary compounds seems extremely promising. In fact, one might go as far as to say a proverbial goldmine of new and very interesting ternary compounds awaits discovery.

The fur or hair-like crystal morphology of the unidentified ternary phase "Q" suggests a chain structure such as $NaMo_4O_6$ (66) or $Ba_{1.16}Mo_8O_{16}$ (81). At the same time this phase does not have to be ternary but could be a binary compound such as Y_4Cl_6 (79), Sc_5Cl_8 (27) or Sc_7Cl_{10} (80). In any case the identification of phase "Q" may provide the first known extended chain structure for a zirconium halide. The best crystals were found growing on the metal in a 900-925°C gradient in reaction Csl8 (19) where the ZrI_4 :CsI:Zr molar ratio was 3:1:100. The same conditions with larger quantities of metal (6-10 g) may produce larger quantities. Since the cesium content is not known it's not possible to say whether the ZrI_4 :CsI ratio should be greater than or less than 3:1.

In this ternary system only one phase has not been seen which might be expected, $CsZrI_3$ with either the $CsNiCl_3$ (83) or $CsMnF_3$ (84) type structure. This compound would have a +2 zirconium and would complete the series Cs_2ZrI_6 , $Cs_3Zr_2I_9$, $CsZrI_3$ where 1/2, 2/3 and all the octahedra holes are filled, respectively. The most reasonable attempt to obtain this phase would seem to be the reduction of either Cs_2ZrI_6 or $Cs_3Zr_2I_9$ since attempts to react CsI and ZrI_4 with the metal have failed. In addition to completing the above mentioned series $CsZrI_3$ would also be the most reduced ternary phase known, since $CsZr_6I_{14}$ contains a zirconium in the oxidation state +2.16. It is noteworthy that although $Cs_3Y_2I_9$ is known (61), the analogous $CsYI_3$ compound has also not been synthesized (85).

Finally, as in the binary system larger quantities of some of the ternary phases are desired, especially $CsZr_6I_{14}$. Again, as in the binary system the best attempt would probably be a reaction of ZrI_4 and CsI (in an \sim 3:1 ratio) with very large, 10-20 g, quantities of metal so as to overcome problems associated with blockage of the surface. Larger quantities of this phase would allow the measurement of its magnetic susceptibility as well as better esr measurements. Most important, studies could be done on hydrogen uptake which would allow nmr studies of the presumed hydride $CsZr_6I_{14}H_x$.

to an and wet

REFERENCES

- 1. J. H. Schemel, "ASTM Manual on Zirconium and Hafnium", ASTM Special Technical Publication 639, American Society for Testing and Materials, Philadelphia, PA, 1977, p. 57.
- 2. B. Cox and J. C. Wood, in "Corrosion Problems in Energy Conservation and Generation", C. S. Tedmon, Jr., Ed., The Electrochem. Soc. Softbound Proceedings Seris, NY, 1974, p. 275.
- 3. D. Cubicciotti, S. M. Howard and R. L. Jones, <u>J. Nucl. Mat</u>. <u>78</u>, 2 (1978).
- 4. H. S. Rosenbaum, <u>Electrochem. Tech.</u> 4, 153 (1966).
- 5. L. F. Dahl and D. L. Wampler, Acta Cryst. 15, 903 (1962).
- 6. F. Meller and I. Fankuchen, Acta Cryst. 8, 343 (1955).
- 7. M. J. Bennett, F. A. Cotton, B. M. Foxman, P. F. Stoluby, <u>J. Am.</u> Chem. Soc. <u>89</u>, 2759 (1967).
- 8. B. Krebs, G. Henkel and M. Dartmann, Acta Cryst. B35, 274 (1979).
- 9. R. L. Daake and J. D. Corbett, Inorg. Chem. 17, 1192 (1978).
- 10. F. R. Sale and R. A. Shelton, J. Less-Common Met. 9, 60 (1965).
- 11. R. L. Daake, Ph.D. Thesis, Iowa State University, Ames, Iowa, 1976.
- 12. D. Cubicciotti and K. H. Lau, J. Electrochem. Soc. 126, 771 (1979).
- 13. D. Cubicciotti, D. L. Hildenbrand, K. H. Lau and P. D. Kleinschmidt, in "Proceedings of th Symposium on High Temperature Metal Halide Chemistry", Vol. 78-1, D. L. Hildenbrand and D. Cubicciotti, Eds., The Electrochem. Soc. Inc., Princeton, NJ, 1978, p. 217.
- 14. G. Engel, Z. Krist. 90, 341 (1935).
 - 15. A Broll, H. G. von Schnering and H. Schäfer, <u>J. Less-Common Metals</u> 22, 243 (1970).
 - 16. J. D. Corbett, Inorg. Synthesis 22 (accepted).
 - 17. D. G. Adolphson and J. D. Corbett, Inorg. Chem. 15, 1820 (1976).

- 18. P. D. Kleinschmidt, D. Cubicciotti and D. L. Hildenbrand, <u>J.</u> Electrochem. Soc. 125, 1543 (1978).
- 19. D. H. Guthrie, Iowa State University, Ames Lab., Quarterly reports, (1977-80).
- 20. J. D. Corbett, R. L. Daake, K. R. Poeppelmeier and D. H. Guthrie, J. Am. Chem. Soc. 100, 652 (1978).
- 21. H. Imoto, J. D. Corbett and A. Cisar, Inorg. Chem. 20, 145 (1981).
- 22. S. I. Troyanov and V. I. Tsirel'nikov, <u>Russ. J. Phys. Chem</u>. (<u>Engl.</u> <u>Transl.</u>) <u>48</u>, 1174 (1974).
- 23. A. Cisar, J. D. Corbett and R. L. Daake, Inorg. Chem. 18, 836 (1979).
- 24. A. W. Struss and J. D. Corbett, Inorg. Chem. 9, 1373 (1970).
- 25. S. I. Troyanov, Vestn. Mosk. Univ., Khim. 28, 369 (1973).
- 26. R. L. Daake and J. D. Corbett, Inorg. Chem. 16, 2029 (1977).
- 27. K. R. Poeppelmeier and J. D. Corbett, <u>J. Am. Chem. Soc</u>. <u>100</u>, 5039 (1978).
- 28. W. L. Rohrbaugh and R. A. Jacobson, Inorg. Chem. 13, 2535 (1974).
- 29. P. Main, M. M. Woolfson and F. Germain, "MULTAN, a Computer Program for the Automatic Solution of Crystal Structures", University of York Printing Unit, U.K. (1971).
- 30. J. D. Scott, Queens University, Kingston, Ontario, private communication (1971).
- 31. "International Tables for X-ray Crystallography", Vol. III, 2nd Ed., Kynoch Press, Birmingham, England, 1962.
- 32. B. E. Brown, Acta Cryst. 20, 268 (1966).
- 33. J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969).
- 34. H. F. Franzen and J. Graham, Z. Kristallogr. 123, 133 (1966).
- 35. J. D. Corbett, Adv. Chem. Ser. 186, 389 (1980).
- 36. E. Warkentin and H. Bärnighausen, Z. Anorg. Allg. Chem. 459, 187 (1979).
- 37. L. J. Guggenberger and R. A. Jacobson, Inorg. Chem. 7, 2257 (1968).

- 38. L. D. Landau and E. M. Lifshitz, "Statistical Physics", Chap. 14, Pergamon Press, London, 1962.
- 39. H. F. Franzen, C. Haas and F. Jellinek, Phys. Rev. B10, 1248 (1974).
- 40. R. Clarke, E. Marseglia and H. P. Hughes, <u>Phil. Mag. B38</u>, 121 (1978).
- 41. Kh. S. Lopis, S. I. Troyanov and V. I. Tsirel'nikov, <u>Russ. J.</u> Inorg. Chem. (Engl Transl.) <u>24</u>, 1306 (1979).
- 42. H. Schäfer and H. G. Schnering, Angew. Chem. 76, 833 (1964).
- 43. A. Simon, Angew. Chem. 93, 23 (1981).
- 44. K. R. Poeppelmeier, Ph.D. Thesis, Iowa State University, Ames, Iowa, 1978.
- 45. G. H. Stout and L. H. Jensen, "X-ray Structure Determination", Collier-Macmillan Ltd., London, 1968, p. 408-10.
- 46. P. Coppens and W. C. Hamilton, Acta Crystallogr. A26, 71 (1971).
- 47. L. Pauling, "The Nature of the Chemical Bond," 3rd ed., Cornell University Press, Ithaca, NY, 1960, p. 410.
- D. J. Robbins and A. J. Thomson, <u>J. Chem. Soc.</u>, <u>Dalton Trans</u>. 2350 (1972).
- 49. W. H. McCarroll, L. Katz and R. Ward, <u>J. Am. Chem. Soc.</u> <u>79</u>, 5410 (1957).
- 50. K. R. Poeppelmeier, J. D. Corbett, T. P. McMullen, D. R. Torgeson and R. G. Barnes, Inorg. Chem. 19, 129 (1980).
- 51. G. Meyer and A. Schönemund, Mat. Res. Bull. 15, 89 (1980).
- 52. O. Lindqvist, Acta Chem. Scand. 22, 2943 (1968).
- 53. B. Chabot and E. Parthé, Acta Crystallogr. B34, 645 (1978).
- 54. D. Ho, W. C. Riley and R. A. Jacobson, <u>Cryst. Struct. Commun. 7</u>, 111 (1978).
- 55. G. J. Wessel and D. J. W. IJdo, Acta Crystallogr. 10, 466 (1957).
- 56. F. A. Cotton and D. A. Ucko, Inorg. Chim. Acta 6, 161 (1972).

57.	R. Saillant, R. B. Jackson, W. E. Streib, K. Folting and R. A. D. Wentworth, <u>Inorg. Chem</u> . <u>10</u> , 1453 (1971).
58.	C. Brosset, <u>Arkiv Kemi 12A</u> , 1 (1935).
59.	R. D. Burbank and H. T. Evans, Acta Crystallogr. 1, 330 (1948).
60.	J. R. Chang, G. L. McPherson and J. L. Atwood, <u>Inorg. Chem</u> . <u>14</u> , 3079 (1975).
61.	D. H. Guthrie, G. Meyer and J. D. Corbett, <u>Inorg. Chem</u> . <u>20</u> , 1192 (1981).
62.	A. Broll, A. Simon, H. G. von Schnering and H. Schäfer, <u>Z. Znorg</u> . <u>Allg. Chem</u> . <u>367</u> , 1 (1969).
63.	A. Simon, H. G. von Schnering and H. Schäfer, <u>Z. Anorg. Allg. Chem</u> . <u>361</u> , 235 (1968).
64.	B. O. Marinder, <u>Chem. Scripta</u> <u>11</u> , 97 (1977).
65.	R. Chevrel, M. Sergent and J. Prigent, <u>J. Solid State Chem</u> . <u>3</u> , 515 (1971).
66.	C. C. Torardi and R. E. McCarley, <u>J. Am. Chem. Soc</u> . <u>101</u> , 3963 (1976).
67.	H. Imoto and J. D. Corbett, Inorg. Chem. 19, 1241 (1980).
68.	A. Simon, H. G. von Schnering, H. Wöhrle and H. Schäfer, <u>Z. Anorg</u> . <u>Allg. Chem</u> . <u>339</u> , 155 (1965).
69.	D. Bauer, H. G. von Schnering and H. Schäfer, <u>J. Less-Common Metals</u> <u>8</u> , 388 (1965).
70.	B. A. Karcher, Iowa State University, Ames, Iowa, private communica- tion (1980).
71.	L. R. Bateman, J. F. Blount and L. F. Dahl, <u>J. Am. Chem. Soc</u> . <u>88</u> , 1082 (1966).
72.	A. Simon, <u>A. Anorg. Allg. Chem</u> . <u>355</u> , 311 (1967).
73.	R. Speiser in "Metal Hydrides", W. M. Mueller, J. P. Blackledge and G. G. Libowitz, Eds., Academic Press, New York, NY, 1968, p. 72.
74.	H. Imoto, Max-Planck-Institute, Stuttgart, West Germany, private communication (1981).

- 75. B. Cox, Chalk River Nuclear Lab., Chalk River, Ontario, Canada, private communication (1979).
- 76. D. Cubicciotti and K. H. Lau, J. Electrochem. Soc. 128, 196 (1981).
- 77. R. E. Araujo, M. S. Thesis, Iowa State University, Ames, Iowa, 1981.
- 78. H. F. Franzen and D. H. Guthrie, Iowa State University, Ames, Iowa, unpublished research.
- 79. Hj. Mattausch, J. B. Hendricks, R. Eger, J. D. Corbett and A. Simon, Inorg. Chem. 19, 2128 (1980).
- 80. K. R. Poeppelmeier and J. D. Corbett, Inorg. Chem. 16, 1107 (1977).
- 81. A. Simon and H. G. von Schnering, J. Less-Common Met. 11, 31 (1966).
- 82. C. C. Torardi and R. E. McCarley, J. Solid State Chem. (1981).
- 83. V. J. Minklewicz, D. E. Cox and G. Shirane, Solid State Comm. 8, 1001 (1970).
- 84. A. Zalkin, K. Lee and D. H. Templeton, <u>J. Chem. Phys.</u> <u>37</u>, 697 (1962).
- 85. G. Meyer, Institute fuer Anorganische Chemie I, Giessen, West Germany, private communication (1980).

ACKNOWLEDGEMENTS

The author would especially like to thank Professor John D. Corbett for his advice, patience and constructive criticism throughout this investigation.

He is particularly thankful to J. Benson, B. Helland, Dr. R. A. Jacobson and other members of his group for their support in the use of the diffractometer and assistance with the crystallographic programs.

The author is also grateful for the assistance, especially in the calculation of a second order phase transition in α -ZrI₂, provided by Dr. H. F. Franzen.

For their help throughout this work R. Schmidt, B. Beaudry, H. Baker, L. Reed, G. Wells and F. Laabs are thanked.

The author thanks Dr. T. Hsiang for the four-probe resistivity measurements on the α -ZrI₂ single crystals.

The helpful suggestions and friendships received from past and present members of Physical and Inorganic Chemistry Group IX of the Ames Laboratory will always be remembered.

The author would like to express a special thanks to his parents Mr. and Mrs. Hugh L. Guthrie for their support and encouragement through both undergraduate and graduate school. Most importantly he thanks his wife Jocelyn for her patience, encouragement, understanding and love.

HALLELUJAH

APPENDIX A.

OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (X10) FOR α -ZrI₂

	К =	0		-3	10	48	50	. 1	9	145	139	5	8	33	39
н	L	FO	FC	-3	11	66	68	1	10	22	24	5	9	161	169
- 8	1	52	52	-3	12	170	175	1	11	41	41	5	10	79	82
-8	2	137	126	- 3	13	42	43	1	12	74	69	5	12	39	37
-8	3	87	82	-3	14	36	37	1	13	182	1 71	6	- 0	46	Δ.R
~ 9	4	24	29	- 3	15	31	34	1	14	54	53	6	ī	25	24
-7	1	13	14	- 3	16	115	120	· 1	15	55	53	6	2	194	102
-7	3	4	6	-3	17	37	37		16	72	64			10.3	103
-7	6	29	28	-2	- i	124	133		17	87	03	ć	Ē	103	103
-7	7	100	00	-2	•	36	100		10	07	0.5		5		40
-7	Å	11	6		7	220	242			242	270	ں د	0	01	02
-7	ă	20	36	-2	<u>ر</u>	220	242	2		243	270	0	8		
-7	10	. 30	22	-2	- 4	220	.232	2	. 4	139	151	0		12	13
	10	104	23	-2	2 4	109	110	2	3	97	98	6	10	63	64.
-0	2	100	110	-2	<u> </u>	102	96	2	4	204	210	7	Q	5	5
-0	<u>د</u>	22	23	-2		126	126	2	5	172	186	7	1	6	7
-0	4	144	139	-2	8	21	4	2	6	31	31	7	2	19	20
-0	6	165	154	-2	9	79	78	2	7	27	25	7	3	61	60
-6	7	5	9	-2	10	46	44	2	9	104	97	7	4	17	17
-6	8	29	30	- 2	11	55	54	2	10	76	71	7	5	95	95
-6	10	18	20	-2	12	65	62	2	11	15	14	7	6	25	27
-6	11	8	10	-2	13	6	0	2	12	56	52	7	7	37	37
-0	12	53	53	- 2	14	38	30	2	13	6	8	8	0	64	61
-6	13	9	11	-2	15	24	25	2	14	42	42	8	1	77	75
-5	1	60	71	-2	16	49	51	2	16	49	49				
-5	3	102	113	-2	17	16	15	3	0	12	15		к =	r 1	
-5	4	38	39	-1	1	27	31	3	1	96	97	н	1	ĒQ	FC
-5.	5	69	65	-1	2	9	11	З	2	45	49	-7	1	103	99
-5	6	45	44	-1	3	30	33	3	3	80	89	-7	2	57	52
-5	7	39	39	-1	4	61	64	3	۵	110	120	-7		74	64
-5	8	65	62	-1	5	146	148	3	5	67	102	-7	<u>,</u>	199	114
-5	9	74	68	-1	6	5	5	ž	6	00	102	-7	-		110
-5	10	52	46	-1	7	163	160	3	ž	77	70	- 7	7	20	49
-5	11	175	163	- 1	Å	100	120		Å	103	140	- 7		29	30
-5	12	70	74	_1	· č	05				143	140		0	03	
	13	21	10		10	3 3		2				-7	9	1	09
-5	1.4	~ ~			11	7		3	10	140	132	-0	2	51	53
-5	10	40	54	-1			92	3	11	55	54	-0	4	48	47
-5	15	50	50	-1	12	74	80	3	15	133	127	-6	5	70	71
	1	27	- 20	-1	13	142	149	د .	13	35	35	-6	6	26	29
-4	2	68	61	-1	14	24	23	3	14	110	99	-6	8	27	28
-4	. 3	233	215	-1	15	92	97	3	15	37	37	-6	9	119	121
	4	86	94	-1	16	76	78	4	0	86	81	-6	10	45	47
-4	5	47	43	-1	17	65	71	4	1	222	225	-6	15	39	41
-4	6	48	42	0	2	132	123	4	2	78	73	-5	1	150	151
-4	7	173	155	0	4	214	198	4	4	64	63	- 5	2	118	117
-4	8	56	53	0	6	153	139	4	5	175	173	~5	ંડ	31	30
-4	9	11	13	0	7	14	1	4	6	52	49	-5	4	117	112
-4	11 :	44	40	0	8	281	273	4	7	4	6	-5	5	85	79
-4	12	-19	20	0	9	6	1	4	8	22	23	5	6	98	90
-4	13	16	16	0	10	60	61	4	9	53	57	-5	7	24	23
	16	6	7	0	12	37	34	4	10	22	25	-5	a	58	53
- 3	1	97	99	0	14	60	52	4	11	13	16	- 5	ā	AA	76
-3	2	18	20	. 1	0	3	4	A	13	6			10	66	6.0
-3	3	90	94	1	1	Ā	10	5		o A	110	-5		14	10
-3	4	98	106	ī	3	10	13	5	2	34.		-3	1 4	10	10
-3	5	74	95	ī	. <u>.</u>	60	66	ר ה	<u>م</u>	52	41	-5	4 Z	30	27
-3	6	65	64		E.	172	100			36	27	-5	14	5	- 5
-3	7	66	0A	:	5 A	113	400	- -	4	32	30	-4	2	58	69
- 3	2	164	166		2	30		5	5	33	36	-4	4	37	43
	õ	73	74		6	123	120	5	0	65	69	-4	5	47	45
	-	• •	10		0	1 < 1	110	5	7	75	84	-4	t.	179	177

APPENDIX B.

OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (X10) FOR β -ZrI₂
10	1	21	8	. 8	1	54.	53	5	9	130	148	- 4 1	L 459	370
10	4	166	158	8	4	1 36	126	6	-5	254	188		• 73	65
11 -	- 7	141	115	8	7	498	528	6	-2	126	128	4 1	0 416	440
· · · ·		189	177	9	-7	94	71	6	1	17	17	5 -	4 86	69
	-1	55	54	ō	-4	331	290	6		-98	94	5 -	1 181	174
	-	77	74			248	263	Ā	7	100	115	5	2 282	262
11	2			~	-1	240	203	· <u> </u>	_	22				112
11	2	01		y y	<u> </u>	113	161				20		9 104	200
12 -	-9	200	773	9	5	130	120	<u> </u>	-1	2 74	207	. 5	8 130	207
12 -	- 6	216	165	10	-9	00	44	7	2	179	177	0 -	5 51	
12	0	99	104	10	6	59	55	8	-6	1052	878	6 (0 229	212
12	з	120	131	10	-3	364	303	8	-3	358	326	6 - 3	38	7
13-3	11	137	99	10	.3	169	180	8	0	36	-27	6 (6. 157	169
13 -	-8	37	29	10	6	72	77	8	3	142	136	7 -	5 200	156
13 -	-5	121	115	11	-8	172	133	8	6	31	35	7 -	2 945	900
13 -	-2	147	157	11	-5	923	723	9	-8	177	141	7	1 83	79
		51	54	11	-2	182	177	ġ	-5	1.52	132	7	A 81	80
1.4-1	••	107	161			224	337		-2	330	276	7	7 205	236
14-1		473	101			664	231	~	-6	100	101		7 103	140
14 -		030	303	. 12-	10	80	03			100	101	0 -	/ 101	147
•		· · ·		12	-7	59	40		-	102	. 99	8 -	• •	21
1	L =	≖ ,≜ .		12	2	136	140	10	-7	1.93	161	8	2 80	75
н	ĸ	Fo	FC	13-	12	21	27	. 10	-4	31	28	8	5 69	73
0	2	280	244	13	-9	96	. 83	10	-1	812	643	9 - 9	6 211	182
0	5	98	89	13	-6	120	100	10	2	93	. 92	9 -	3 13	8
0	8	187	180	13	-3	138	126	10	5	1 04	106	9	0 170	141
0 1	11	75	68	13	0	540	530	11	-9	230	185	9	3 668	651
0 1	14	60	57	14-	11	263	226	11	-6	38	30	10 -	8 331	302
1	Ō	514	428	14	-8	35	33	11	-3	120	101	10 -	5 173	162
:	Ā	180	169	14		- BA	71		õ	82	74	10 -	2 32	17
	ă	760	720				••	11	ž	167	176	10	1 56	47
		137	20		• -					1.12	100	11-1	a 107	00
	12	40	31		L			12	-0	112	100		J 107	~~~
2	1	212	.100	H	ĸ	PO	FC	12	-5	25	83	11 -	7 253	231
2	7	406	378	0	1	495	410	12	-2	111	103	11 -	4 13	14
2 1	10	84	-77	0	. 🌢 .	287	260	13-	-10	275	219	. 11 -	1 216	191
2 1	13	- 37	36	0	7	134	133	13	-7	1 04	92	12 -	9 551	445
з-	- 1	133	120	0	10	76	69	13	-1	71	66	12 -	6 71	70
3	5	378	359	0	13	554	564	14	-9	83	82	12 -	3 126	102
3	8	141	143	1	2	104	97	14	-6	166	156	12	0 258	230
3 1	11	75	79	Ĩ	5	72	72	14	-3	115	105	13 -	5 44	38
		1623	1483		Ř	52	A7	•••	-			13 -	2 219	213
	~	46	72	:	11	1 40	162					14 -	7 214	205
		0.5		· •	•••	376	1 36			- U				
	3	40	40	~		330	210		~	FU	FC.	14 -	- 335	
•	o	2.4.4		~	_			-	-					
	~	207	213	2	3	196	128	0	0	1262	1203	-	_ ~	
	9	101	99	2	3	364	128 342	0	03	1262 59	1203 56	L	= 7	
5 -	9 -2	101 80	99 82	2 2 2	3 6 9	364 30	128 342 3	0	0 3 6	1262 59 80	1203 56 72	L H (= 7 K F0	FC
5 -	9 -2 4	101 80 86	273 99 82 88	2 2 2 2 2	3 6 9 12	364 30 80	128 342 3 89	0 0 0	0 3 6 9	1262 59 80 148	1203 56 72 143	L H (= 7 K F0 2 74	FC 87
5 5 5	9 -2 4 7	101 80 86 99	273 99 82 88 104	2 2 2 2 3	3 6 9 12 -2	364 30 80 277	128 342 3 89 187	0 0 0 0	0 3 6 9 12	1262 59 80 148 169	1203 56 72 143 177	L H (0 (= 7 K FO 2 74 5 34	FC 87 31
5 5 5 5	9 -2 4 7	101 80 86 99 89	273 99 82 88 104 92	22233	3 6 9 12 -2 1	364 30 80 277 1108	128 342 3 89 187 990	0 0 0 0 1	0 3 6 9 12 1	1262 59 80 148 169 89	1203 56 72 143 177 70	L H 0 0	= 7 K FO 2 74 5 34 8 96	FC 57 31 94
5 5 5 5	9 -2 4 7 10 -4	101 80 86 99 89 159	273 99 82 88 104 92 123	222333	3 6 9 12 -2 1 4	152 364 30 80 277 1108 343	128 342 3 89 187 990 306	0 0 0 0 1 1	0 3 6 9 12 1 4	1262 59 80 148 169 89 67	1203 56 72 143 177 70 64	L 0 - 0 - 0 -	= 7 K FO 2 74 5 34 8 96 1 39	FC 57 31 94 41
5551	9 -2 4 7 10 -4 2	101 80 86 99 89 159 913	273 99 82 88 104 92 123 1086	22223333	36912 -2147	152 364 30 80 277 1108 343 170	128 342 3 89 187 990 306 166	0 0 0 1 1	0 3 6 9 12 1 4 7	1262 59 80 148 169 89 67 33	1203 56 72 143 177 70 64 29	L H 0 0 1 0 1	= 7 K FO 2 74 5 34 8 96 1 39 0 332	FC 57 31 94 41 278
5555	9 -2 4 7 10 -4 5	101 60 86 99 69 159 913 78	273 99 82 88 104 92 123 1086 80	2 2 2 2 3 3 3 3 3 3	3 6 9 12 -2 1 4 7 10	152 364 30 80 277 1108 343 170 65	128 342 3 89 187 990 306 166 68	0 0 0 1 1 1	0 3 6 9 12 1 4 7	1262 59 80 148 169 89 67 33 26	1203 56 72 143 177 70 64 29 25	L 0 0 0 1 1	7 K F0 2 74 5 34 8 96 1 39 0 332 3 194	FC 57 31 94 41 278 179
55556666	9 4 7 10 4 5 8	101 60 86 99 69 159 913 78 50	273 99 82 88 104 92 123 1086 80 56	2 2 2 2 3 3 3 3 4	3692-1470-1	152 364 30 80 277 1108 343 170 65 34	128 342 3 89 187 990 306 166 68 34	0 0 0 1 1 1 2	0 3 6 9 12 1 4 7 10 -1	1262 59 80 148 169 89 67 33 26 40	1203 56 72 143 177 70 64 29 25 33	L 0 0 1 1	7 5 34 6 96 1 39 0 332 3 194 6 212	FC 57 31 94 41 278 179 187
55566667	9247042586	101 80 86 99 89 159 913 78 50	273 99 82 88 104 92 123 1086 80 56	2 2 2 2 3 3 3 3 4	3692-14701-2	152 364 30 80 277 1108 343 170 65 34 225	128 342 39 187 990 306 166 68 34	0000111122	0 3 6 9 12 1 4 7 10 -1 2	1262 59 80 148 169 89 67 33 26 40	1203 56 72 143 177 70 64 29 25 33	L 0 0 1 1	= 7 K FO 2 74 5 34 8 96 1 39 0 332 3 194 6 212 9 674	FC 57 31 94 41 278 179 187 624
5551666677	92470425867	101 80 86 99 89 159 913 78 50 77	273 99 82 88 104 92 123 1086 80 56 63	2 2 2 2 3 3 3 3 4 4	36922147012F	152 364 30 80 277 1108 343 170 65 34 225	128 342 39 187 990 306 166 68 34 195	00001111122	0 3 6 9 12 1 4 7 10 -1 2	1262 59 80 148 169 89 67 33 26 40 174	1203 56 72 143 177 70 64 29 25 33 148	L 0 0 1 1 1	= 7 K F0 2 74 5 34 8 96 1 39 0 332 3 194 6 212 9 674	FC 87 31 94 41 278 179 187 626
5555666777	924704258630	101 80 86 99 159 913 78 50 77 136	273 99 82 88 104 92 123 1086 80 56 63 130		369221470125	152 364 30 277 1108 343 170 65 34 225 222	128 342 39 187 990 306 166 68 34 195 212	00001111222	0369121 4710-125	1262 59 80 148 169 89 67 33 26 40 174 992	1203 56 72 143 177 70 64 29 25 33 148 8997	L H 0 0 1 1 1 2	7 74 5 34 8 96 1 39 0 332 3 194 6 212 9 674 1 290	FC 57 31 94 41 278 179 187 626 257
555666777	924704258630	101 80 86 99 159 913 78 50 77 136 135	273 99 82 88 104 92 123 1086 80 56 63 130 145		3692214701258	152 364 30 80 277 1108 343 170 65 34 225 222 78	128 342 39 187 990 306 166 68 34 195 212 82	000011112222	03691214710-1258	1262 59 80 148 169 89 67 33 26 40 174 992 78	1203 56 72 143 177 70 64 29 25 33 148 899 76	L 0 0 1 1 1 2 2	7 K FO 2 74 5 34 5 34 1 39 0 332 3 194 6 212 9 674 1 290 4 64	FC 87 31 94 41 278 179 187 626 257 53
55566667777	9247042586303	101 86 99 159 913 78 50 77 136 135 129	273 99 82 88 104 92 123 1086 80 56 63 130 145 129	2 2 2 2 3 3 3 3 3 4 4 4 4 4	36922147012581	152 364 30 277 1108 343 170 65 34 225 222 78 102	128 342 3 89 187 990 306 166 68 34 195 212 82 111	0 0 0 1 1 1 1 2 2 2 2 2 2 2 2	0 3 6 9 12 1 4 7 10 -1 2 5 8 11	1262 59 80 148 169 67 33 26 40 174 992 78 106	1203 56 72 143 177 70 64 29 25 33 148 899 76 122	L 0 0 1 1 1 2 2 2	7 7 7 7 7 7 7 7 1 3 1 3 1 3 1 2 3 1 2 3 3 3 3 3 3 3 4 6 2 3 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 <td< td=""><td>FC 87 31 94 41 276 179 187 626 257 53 144</td></td<>	FC 87 31 94 41 276 179 187 626 257 53 144
555666677777	92470425863036	101 86 99 159 913 78 50 77 136 135 129 30	273 99 82 88 104 92 123 1086 80 56 63 130 145 129 21	2 2 2 2 3 3 3 3 4 4 4 4 5	369221470125813 1-1-25813	152 364 30 277 1108 343 170 65 34 225 222 78 102 434	128 342 3 89 187 990 306 66 68 34 195 212 82 111 337	0 0 0 0 1 1 1 1 2 2 2 2 3	0 3 6 9 12 1 4 7 0 -1 2 5 8 11 0	1262 59 80 148 169 89 67 33 26 40 174 992 78 106 148	1203 56 72 143 177 70 64 29 25 33 148 899 76 122 140	L H 0 1 1 1 2 2 2 2 1	7 74 74 5 34 6 96 1 39 0 332 3 194 6 212 9 674 1 290 4 64 7 146 0 9	FC 57 31 94 41 278 179 187 626 257 53 144 11
5556666777777	924704258630369	101 80 86 99 159 913 78 50 77 136 135 129 30	273 99 82 88 104 92 123 1086 80 56 63 130 145 129 21 1	2 2 2 2 3 3 3 3 4 4 4 4 4 5 5	3 6 9 2 2 1 4 7 10 1 2 5 8 11 3 0	152 364 30 277 1108 343 170 65 34 225 222 78 102 434 227	128 342 3 89 187 990 306 166 68 34 195 212 82 111 337 214	0 0 0 0 1 1 1 1 2 2 2 2 2 3 3	036921470-12581103	1262 59 80 148 169 89 67 33 26 40 174 992 78 106 148 306	1203 56 72 143 177 70 64 29 25 33 148 899 76 122 140 275	L H 0 0 1 1 1 2 2 2 1 3 -	# 7 K FO 2 74 5 34 8 96 1 39 0 332 3 194 6 212 9 674 1 290 7 146 0 91	FC 57 31 94 41 278 179 187 626 257 53 144 11
5556666777778	9247042586303695	101 80 86 99 159 913 78 50 77 136 135 129 30 10 53	273 99 82 88 104 92 123 1086 80 56 63 130 145 129 21 1 45	2 2 2 2 3 3 3 3 4 4 4 4 5 5 5	3 6 9 2 2 1 4 7 10 - 2 5 8 11 - 3 0 3	152 364 30 277 1108 343 170 65 34 225 222 78 102 434 227 119	128 342 3 89 187 990 306 166 68 34 195 212 82 111 337 214 105	0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3	03691214700 91214700 -12581039	1262 59 80 148 169 67 33 26 40 174 992 78 106 148 306 45	1203 56 72 143 177 70 64 29 25 33 148 899 76 122 140 278 47	L H 0 0 1 1 1 2 2 2 1 3 - 3	# 7 K FO 2 74 5 34 8 96 1 39 0 332 3 194 6 212 9 674 1 290 4 64 7 146 0 9 1 127 2 495	FC 57 31 94 41 278 179 187 626 257 53 144 11 101 434

۰.

APPENDIX C.

THE CALCULATED AND OBSERVED GUINIER

POWDER DIFFRACTION PATTERNS FOR Cs2ZrI6

A Guinier powder pattern of $Cs_2 ZrI_6$ was measured by means of a mm scale placed on and developed with the film. Four NBS Si lines along with the zero line were refined to yield 20 standard deviations of 0.002. hkl and 20 values for eleven of the strongest lines were refined in LATT to give, with a cubic restriction, <u>a</u> = 11.659(2) Å.

The $A_2^{MX}_6$ compounds of the type $K_2^{PtCl}_6$ (14) crystallize in the cubic space group Fm3m with Z = 4; the cations and metals lie on the special position 1/4, 1/4, 1/4 and 0,0,0, respectively, while the halide is at x,0,0. The parameter x was approximated from the average of the Zr-I distances (2.87 and 2.92 Å) in $Cs_3Zr_2I_9$ (2.895 Å). Using <u>a</u> = 11.659 Å and x = 0.246, the powder on the following page was calculated. The observed powder agrees quite well in both intensity and 20 verifying that Cs_2ZrI_6 is isotypic with K_2PtCl_6 as well as Cs_2ZrCl_6 .

		0		
hkl	2θ obs.	^{2θ} calc.	I _{obs.}	^I calc.
111	13.22 ³	13.14	1	0.7
200	15.26 ³	15.19	1/2	0.3
220	21.56 ³	21.54	1/2	0.3
311		25.31		0.3
222	26.50 ³	26.46	10	10
400	30.69 ³	30.65	8	7.3
333	40.20 ³	40.15	1/2	0
440	43.80 ³	43.89	6	5
622	52.01 ³	51.98	4	4
444	54.53 ³	54.48	2	1.6
800	63.86	63.81	1/2	0.7
662	70.38	70.33	1/2	1.4
840	72.45 ³	72.44	1/2	1.8
844	80.663	80.68	1/2	1.3

Calculated and observed Guinier powder patterns for Cs2ZrI6

¹ Standard deviations of 2θ values are ± 0.02 .

²All 20 with $I_{calc.} \ge 0.3/10$ are listed.

³ Eleven lines used in LATT.

APPENDIX D.

OBSERVED AND CALCULATED STRUCTURE FACTOR

AMPLITUDES (X10) FOR Cs32r219

1/2			Csz Zro	Ig		
.H≉a KLFOFC	1 24 92 -99 2 1 27 102 0 2	8 8582 8668 2 428 -573	1 14 221 -154 1 15 219 -230	0 6 320 •519 0 7 2589 2550	2 18 427 -435 2 19 889 -967	8 18 583 -482 8 19 243 249
8 2 555 -945 8 4 979 -682	H R 2 2	3 154 -0	1 16 512 -539	8 5 2882 2884	2 28 646 688	8 21 137 159
0 6 6585-8816	K L FO FC 2	5 261 -0	1 18 355 -345	0 10 2461-2502	2 22 780 -885	2 24 144 145
0 0 223 -26 0 10 215 -111	0 0 1014 -631 2	6 5624-5428 7 291 8	1 19 404 391 1 20 446 442	0 11 419 438 8 12 81 -40	2 23 216 253	1 0 94 -165
0 12 6623 7142	B 2 4843+4692 2	8 194 -196	1 21 582 557	0 13 848 -835	3 1 712 678	1 2 177 210
0 14 1874-1764 0 16 220 -93	0 3 5416 5767 2	9 634 . 0	1 22 385 356	0 14 1307=1328	3 2 93 108	
0 18 2694-2538	0 5 3125 3107 2	11 190 0	1 25 683 -789	8 16 1693 1742	3 5 473 -460	1 5 629 -568
0 20 696 766 8 24 1659 1559	0 6 469 =655 2 0 7 3489=3371 2	12 5021 4949 14 1335+1338	2 8 511 +632	0 17 360 -362 0 18 562 -561	3 6 491 -477 3 7 88 -128	1 6 478 -443
P 26 1331=1306	8 8 3788 3996 2	15 122 -0	5 5 132 -53	0 19 1121 1208	585 665 8 6	1 8 334 301
H = 1	0 10 3399-3462 2	16 171 -147 -	855 585 E 5 481 811 4 5	0 20 894 930 6 21 388 393	3 9 86 87 3 18 277 267	1 9 268 -263
K L FD FC	0 11 644 -534 2	19 94 0	2 5 1953-1175	8 22 1824-1844	3 11 89 13	1 11 63 75
0 0 009 -755 0 1 1131 1185	0 13 1135 1110 2 0 14 1791+1865 2	20 568 571 22 179 125	2 6 341 -338 2 7 226 261	P 23 278 -296	3 12 86 55 3 13 924 941	1 13 1149 1156
8 2 165 67	A 12 5552 5558 5	24 1234 1217	2 8 828 769	0 25 236 -254	3 14 86 72	1 17 587 -584
0 4 146 -95 0 5 1770-1696	0 16 2338 2332 2 R 17 495 488	26 1846-1848	2 9 556 -554 2 10 389 410	1 0 806 865	3 15 135 -182	1 18 345 -352
e 6 694 -608	8 18 885 -772	н в З	2 11 265 312	1 2 344 -358	3 17 386 -396	1 20 192 233
0 8 1090 994	0 19 1614=1498 K 0 20 1304 1234 0	L FD FC 0 1394 1223	2 12 288 -275	1 4 238 170	3 18 378 -396 3 19 175 -221	1 21 239 -305
Ø 9 548 -562	0 21 552 -537 P	1 292 -338	2 14 297 -287	1 6 794 849	3 20 118 163	2 0 808 777
P 10 758 829 8 11 584 319	0 22 1435+1356 0 0 23 388 352 0	2 387 -289	2 15 276 277	1 7 154 -180	3 21 125 -144	2 1 302 -309
P 12 210 -370	0 24 380 341 0	4 305 247	2 17 655 -682	1 10 1073-1022	4 2 3665 3399	2 5 363 -350
0 13 2011 1947 0 14 339 -271	0 25 327 317 0	5 341 -388	2 18 169 -208	1 11 274 -277	4 1 280 -0	2 6 362 346
@ 15 248 237	P 27 376 345 0	7 204 239	2 20 491 499		4 4 352 -337	2 8 594 -599
0 16 689 -655 0 17 1057-1007	1 0 316 -417 0	.8 1436=1600	2 21 597 -572	1 14 154 162	4 6 2079-2155	2 9 178 -23
P 18 495 -431	1 2 71 154 P	11 331 354	2 23 104 149	1 17 194 215	4 10 97 92	2 11 374 351
8 19 549 -522 8 29 614 579	1 3 298 -315 0	12 480 445	2 24 106 -97 2 25 5 33 543	1 18 629 675	4 12 2054 2151	2 12 389 484
0 21 732 -672	1 5 1256+1134 8	14 224 246	3 6 464 352	1 20 683 -711	4 16 112 -174	2 14 78 -35
0 22 438 426 A 23 23A 251	1 6 823 -664 8	16 1842 1854	3 2 341 -277	1 21 86 -49	4 18 748 -778	2 16 449 468
0 24 87 -9	1 8 761 772 8	18 823 772	3 6 895 993	1 23 110 -136	- 20 230 220	2 18 400 365
P 25 874 856 P 26 98 -18	1 9 226 -268 0	19 85 117	3 8 930 -901 3 10 930 -084	1 24 97 -34		2 19 97 122
8 27 119 188	1 11 331 240 #	22 699 -688	3 12 111 70	2 1 949 923	0 0 109 -156	2 21 132 72
1 0 1517 1271 1 2 A35 -322	1 12 63 -55 0	23 148 167	3 13 194 B	2 2 2163-2134	0 1 786 -797	2 22 264 -311
1 4 464 321	1 14 123 -72 0	25 95 -86	3 16 759 782	2 4 2349 2460	0 3 526 520	3 1 544 -490
1 6 1142 1234	1 15 168 -34 1	0 397 -461	3 18 662 700 X 70 607 -609		0 4 92 91	3 2 152 176
1 9 69 -0	1 17 854 -823 1	2 76 167	3 22 501 -528	2 7 1841-1843	0 6 588 - 567	3 4 94 -139
1 10 1687-1676	1 18 544 -529 1	3 185 -185	K	2 8 1918 2011		3 5 468 425
1 12 424 463	1 24 399 392 1	6 561 -644	K L FO FC	2 18 1814-1836	0 9 112 -158	3 8 218 235
1 14 374 391	1 21 468 -434 1	8 752 699	8 8 696 =647 A 1 1454-1141	2 11 279 -268	0 10 201 203	3 9 392 404
1 16 1412 1276	1 23 193 192 1	10 644 662	0 2 2919-2966	2 14 906 -931	W 14 .89 39	3 12 105 -01
1 18 1902 961	1 24 106 102 1	11 307 -304	0 3 3833-3870	2 15 1284 1303	0 15 230 267	3 13 785 -798
1 25 013 -95	1 26 155 92 1	13 1486-1482	8 5 2115-2329	2 17 271 263	0 17 481 496	3 15 105 -148

•

---- ·.

2/2		Csz Zr2 I9	
3 16 288 -302 3 17 394 379 3 18 147 -190 3 19 122 189 3 20 142 223 4 2 235 -375	1 18 185 -135 0 1 19 99 187 8 1 26 268 319 8 1 21 361 486 8 2 8 358 -316 8	1 99 133 H = 1 2 117 -156 H = 8 K L 3 111 123 K L FO FC Ø 0 1 4 286 192 0 0 244 -235 0 1 5 664 -648 0 1 303 307 8 2 4	10 FO FC 107 -187 139 -158 137 -378
4 1 107 154 4 4 114 115 4 5 584 492 4 6 98 -134 4 7 303 274	2 1 230 9300 M 4 2 2 1286-1142 M 4 2 3 1524-1524 M 4 2 4 1410 1367 M 4 2 5 968 -923 D 1 2 6 135 -133 C 1	6 113 -143 0 2 118 -823 0 3 3 7 412 369 0 3 1414 1247 8 508 521 0 4 1135 1031 9 342 -385 0 5 729 677 1 86 114 0 7 897 -861 2 227 -824 0 8 875 824	110 -210
4 8 353 389 4 9 298 -298 4 11 124 64 4 12 131 -182 4 13 358 365 4 14 147 -151	2 7 1151 1151 0 1 2 6 1200 1136 0 1 2 9 1002 1043 0 1 2 10 1074=1032 0 1 2 11 99 108 0 2 2 12 90 -117 1	3 409 411 0 9 904 -073 4 139 -214 0 10 032 -786 5 135 143 0 11 120 -35 7 312 -346 0 12 96 -71 8 299 346 0 13 168 239 0 113 136 0 14 351 -324	
4 15 104 141 4 17 239 -280 5 2 151 -192 5 4 104 102 5 6 619 583 5 8 315 -329	2 13 362 -368 1 2 14 538 -586 1 2 15 747 -754 1 2 16 765 780 1 2 17 145 -155 1 2 18 289 -226 1	1 98 121 8 15 668 661 2 239 -223 8 16 569 684 4 88 128 1 1 486 438 5 115 146 1 2 185 141 6 677 652 1 5 148 -193 7 84 -89 1 4 322 -208	• •
5 10 367 -406 5 14 88 16 H E 6 K L F0 FC B 0 4752 4521	2 19 641 662 1 4 3 6 363 336 1 1 3 1 170 188 1 1 3 2 153 +263 1 1 3 5 249 228 1 1 3 6 405 401 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
8 2 308 -384 8 4 461 -391 8 6 2918-2938 8 7 755 31 8 8 99 -89 9 9 252 -3	3 7 106 -138 2 3 8 383 -375 2 3 10 383 -408 2 3 11 220 -230 2 3 12 126 176 2 3 13 95 102 2	8 97 -48 2 5 94 -50 1 444 -372 2 6 932 -902 3 367 341 2 7 166 31 4 114 123 3 8 104 -113 5 194 250 3 1 105 -148 4 33 3 160 -176	
0 10 96 82 0 12 2774 2801 0 14 839 -819 0 16 130 -178 0 18 1024-1026 8 20 322 308	3 16 290 317 2 3 17 135 190 2 4 0 164 -213 2 4 1 184 233 2 1 4 2 719 -619 2 1 4 3 977 937 2 1	7 84 -36 3 5 285 232 8 101 177. 9 143 -175 H # 9 1 91 67 K L FO FC 3 489 -488 8 8 579 518 5 175 248 8 1 221 -174	
0 22 134 147 1 0 257 -256 1 1 408 -371 1 3 320 -314 1 4 88 -34 1 5 614 600	4 4 840 791 3 4 5 561 542 3 4 6 117 -109 3 4 6 643 639 3 4 8 643 639 3	1 431 390 0 3 64 34 2 116 160 0 5 215 -213 3 99 128 0 6 116 75 4 113 -101 0 7 132 128 5 112 -184 0 8 154 -229 4 194 -251 0 10 10 7	
i 6 289 -239 1 7 99 -124 1 8 419 402 1 9 462 470 1 10 323 318 1 1 8 411	4 18 597 -682 3 4 11 207 -16 3 4 12 91 -86 3 1 4 14 237 -245 3 1 5 1 310 292 3 1 5 3 116 -147 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 12 155 -174 1 13 713 -716 1 14 67 -125 1 15 211 -230 1 16 278 -256 1 17 423 426	5 5 97 +151 4 5 6 183 +232 4 H # 7 4 K L FO FC 4 0 R 344 -386 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

APPENDIX E.

OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES (X10) FOR CsZr₆I₁₄ (CRYSTALS 1 AND 2)

CsZr₆I₄ (Crystal 1) F₀F_c x 10

H # U	12 14 386 368	5 8 2361 2225	15 9 707 749	A 10 8613 7962	13 12 2370 2036	3 # 2476 2191
K L FO FC	14 × 2079 1853	5 9 1040 1445	15 10 464 788	A 11 8574 8470	12 13 2048 2743	3 44 3847 3486
0 2 340 7A	14 3 1113 1381	E 10 1711 1000			12 13 2440 2743	3 11 2517 2407
5 A1536140543	1 6 1336 1601	2 10 2313 2504	12 12 405 404	4 12 3714 3311	12 14 4444 4686	3 13 2156 1777
41333114303	14 6 342 731	5 12 1547 1598	17 1 352 299	4 13 391F 3299	12 15 2534 2596	3 14 608 715
0 0 2143 2111	14 8 1778 1881	5 13 447 272	17 2 381 348	4 14 8460 7356	14 @ 3613 3312	3 16 2105 2088
8 81759422417	14 10 830 1012	5 14 2561 2453	17 3 1013 1013	4 15 3090 2923	14 1 1956 1931	3 17 984 951
0 10 2809 2761	16 01300011827	5 16 1936 1100	17 5 2600 2442	# 16 1675 1652	14 2 1623 1713	5 1 2859 1421
8 121277411288	16 2 873 892	5 17 1566 1635	17 7 381 102	A 17 4090 4189	14 3 3161 3164	E 3 4464 4734
A 14 3697 3456	16 / 0933 0501	7 4 948 478	17 8 1581 1893	4 4 4078 4107	14 3 2331 2330	3 2 4090 4720
0 14 7386 ANT7	16 6 1030 1003		11 0 1331 1326	0 0 4030 4131	14 5 350 210	3 4 843 048
	10 0 1424 1443	7 8 1364 1401	14 1 1333 1344	0 1 2007 2024	14 8 344 498	5 5 3268 3468
6 16 11/2 1104	10 0 0215 0232	/ 5 513 4/4	19 3 423 529	6 2 2037 2477	14 7 2800 2693	5 6 4193 5093
5 0 1763 1928	10 15 2000 0125	7 A 3AM 196	19 5 1837 1788	6 3 3264 3 09p	14 8 2457 2223	5 7 1755 1868
2 2 935 676	18 0 1420 1127	7 5 2239 2895	19 6 492 559	6 4 321 125	14 10 2223 2283	5 6 4365 4297
2 4 4594 4665	18 2 494 619	7 6 698 750	19 9 977 1961	6 6 639 267	14 11 1127 1108	5 9 954 1482
2 6 3381 3352	18 4 3524 3359	7 8 3112 2887	21 2 921 902	6 7 3422 3410	10 13 065 613	S 14 DAR 617
2 A 791 545	18 6 2241 2389	7 11 1115 #44	31 3 434 630	4 8 0705 3444		5 10 400 017
3 10 1348 1138	10 0 22-1 2207	7 47 4444 4447	EI 3 4/1 320	6 6 2123 2466	14 13 12/3 131/	2 11 5004 5410
2 10 1004 1134	10 10 044 053	/ 12 1143 1145	21 2 144 472	e y 364 344	16 0 1119 1113	5 12 715 686
e 16 1014 1801	50 A 1045 1065	/ 13 1103 1092		6 10 2479 255P	16 1 591 547	5 13 2202 1889
€ 14 1662 1605	20 4 1508 1496	7 14 594 397	H # 2	6 11 1221 1982	16 2 1007 1081	5 14 715 709
5 16 5188 5583	2P 6 1341 1475	7 16 1873 1940	K L FO FC	6 12 748 637	16 3 13/2 1263	5 16 2819 3458
2 16 533 450	22 2 452 715	9 1 2097 3/82	9 N 1582 1837	6 13 2896 1967	16 6 573 612	5 17 599 711
# 0 3948 3h55		9 2 634 72	8 1 1100 1143	A 15 1333 1778	16 7 1139 1044	7 1 2123 2419
A 2 1774 1793		6 7 3610 1340	0 1 1400 1103	6 15 1336 1336	10 / 1154 1606	1 1 6167 6614
A A 140 313		7 3 E317 3P47	1 2 1808 1743	0 10 415 664	10 0 432 344	/ C 1106 1536
307 616		7 4 446 647	0 2 412 939	0 0 202 301	18 2 35r 527	7 3 1693 1291
100 550 8 4	1 1 3197 2481	9 5 5755 5497	M 4 3660 3858	8 1 286 229	18 4 1632 1678	7 4 1070 1192
4 6 3062 3493	1 2 378 313	9 8 2285 2124	Ø 5 1028 1020	8 2 1485 1453	20 0 2112 1918	7 5 1346 1487
4 10 798 928	1 3 2748 3425	9 9 1441 1786	0 6 2949 3474	8 4 2220 2638	24 1 3561 3591	7 6 626 499
4 14 1259 1176	1 4 1195 1151	9 11 1644 1369	0 7 863 985	8 5 830 608	22 2 4966 4929	7 7 1423 1487
A 16 2057 1922	1 5 5343 6688	9 13 3384 1895	0 8 040 1333	B 6 3035 3010		7 1403 1037
6 8 1835 1793	1 4 438 181	0 13 3400 3163			EN 3 3404 3431	1 10 040 714
	1 6 460 171	- 7 13 342E 3137	0 11 10/0 1045	0 0 3/0 1/3	20 4 1210 1152	/ 11 25/3 2430
8 2 1431 1473	1 9 5211 5412	9 15 439 685	0 12 1003 940	8 10 424 569	20 5 3118 3312	7 12 1167 1200
6 4 484 414	1 9 1496 1219	9 16 1290 1439	0 13 1048 966	8 12 478 687	24 6 4153 4482	7 13 870 806
6 6 1523 1493	1 11 1772 1503	11 1 1295 947	Ø 14 2397 2179	8 13 1197 1080	20 7 2732 2993	7 14 1468 1488
6 8 2445 2218	2015 9755 51 1	11 2 1297 1153	0 17 715 822	6 14 1262 1442	20 8 1515 1410	7 15 485 544
6 10 523 701	1 13 3463 3079	11 3 970 1043	2 0 1985 1775	8 16 438 249	22 0 1467 1582	7 17 511 618
6 12 639 743	1 14 543 446	11 4 438 439	2 1 1000 1105	10 0 734 450	33 4 474 700	
6 16 1638 1886	1 15 734 544	11 6 3840 3333			FE 1 0/1 / / /	7 1 1475 E017
		11 3 2304 2132	C C 1404 1441	10 1 300 403	22 2 040 401	7 2 1030 2320
	1 16 1064 1767	11 6 040 004	2 3 1347 1467	10 5 696 649	22 3 798 964	9 3 1948 2251
0 C 330 400	3 1 1240 5321	11 14 1551 1344	2 4 2105 2169	10 4 2925 2808		9 6 2562 2493
8 41615113471	3 2 3321 3607	11 11 1204 1130	2 6 1578 1520	10 5 510 530	H = 3	9 7 1902 2038
0 6 3581 3694	3 3 337 910	11 12 373 428	2 7 1663 1952	10 6 1747 1746	K L FO. FC	9 8 2136 1901
8 81716816446	3 4 1985 1138	11 13 1255 1304	2 8 1326 1158	10 7 328 223	1 1 2073 2974	9 11 2661 2567
8 10 1741 1424	3 5 1326 1781	11 14 1518 1614	2 10 1140 1147	10 9 332 256	1 2 1847 1941	9 13 461 344
8 12 9724 9509	3 6 44A TAA	11 15 407 414	2 12 1146 1125	10 11 951 074	1 3 3815 3043	0 10 4557 4457
POAC FAFC AL A	1 7 607 1281	18 1 30/3 1953	3 43 4344 4433		1 3 2313 2743	7 14 1993 1433
A 14 BOTA BOAL	2 8 1006 4044	13 - 3 2006 2733	- 13 1/11 142/	10 12 1120 1104	1 3 7/3 120	7 12 1144 1282
- 10 2724 275	2 C 1700 1908	13 4 6660 6373	2 14 1248 1270	10 13 602 697	1 5 2033 2978	4 16 1840 2018
10 N 2541 2455	5 4 1967 2040	15 4 703 632	2 15 432 544	10 14 1557 1564	1 7 2194 2273	11 1 441 543
10 2 548 354	3 16 5093 5085	13 7 1968 1284	2 16 471 615	12 0 2950 2839	1 8 2005 1974	11 2 354 486
10 4 5746 5583	3 11 539 399	13 8 1726 1435	2 18 479 786	12 1 6586 6318	1 11 3072 2960	11 4 815 433
10 6 3951 3726	3 12 1329 1154	13 9 2893 1935	4 0 3036 3225	12 21064410016	1 14 1828 1721	11 5 1916 1556
10 10 2029 1795	3 13 401 539	13 10 2037 2351	4 1 4567 9112	12 3 9641 9477	1 15 1297 1270	11 7 450 441
10 12 2039 2220	3 14 2506 28HE	13 13 608 767	A 31505714465	13 4 4348 3600	1 14 1044 4044	
10 14 3260 3466	1 14 613 AAA	12 44 1988 4048	A 21002110022	10 6 4406 /01/	1 10 1414 1411	11 0 022 0/0
10 14 1015 P-1-	2 10 012 004	13 14 1754 1445	4 51465016764	16 2 /422 6916	1 11 054 049	11 9 473 557
16 10 1410 GIIP	3 17 YAP 1538	13 1 336 476	4 4 8082 8322	12 610408 8947	3 1 1981 2834	11 19 936 926
10 8 334 383	3 18 1958 1174	15 2 1564 1473	4 51161911319	12 7 5280 4466	3 2 3003 2924	11 11 1152 1200
12 2 843 875	5 1 3557 4161	15 3 602 556	4 61392015456	12 8 2622 2157	3 4 409 345	11 12 753 940
12 4 1505 1502	5 2 4205 4305	15 5 382 407	4 7 4905 375A	12 9 6325 5524	3 5 3036 2495	11 13 1217 1171
12 6 1612 1566	5 4 1334 1234	15 6 738 794	A 8 2662 2441	12 10 6668 6105	1 6 3563 1407	12 1 2124 232-
12 8 1250 1240	5 7 1216 1704	15 8 1017 3476		72 10 0000 0103	J 0 EJ03 344/	13 1 E131 E436 .
	- · · · · · · · · · · · · · · · · · · ·	77 0 7431 Ealu		12 II 3031 3302	3 / 16PP 1307	13 C CADY CA23

10 S 402 1105	5091 2091 01 9	8551 0261 2 0	5560 5910 2 6		Int afat of o	BEAE 3005 11 4
9431 2581 1 01	the goat ct o	4C91 9991 1 8	E+C7 E047 1 4			
HERT ALLT & AL	6 16 56J2 71 8			104 044 4 00		2061 8751 41 8
			174 EIY XI L	100 404 7 05	1249 6497 41 8	6501 9001 SI 0
767 602 11 71	207 722 11 7	K I BU BU	AAIS 1135 AT T	ALT 914 E 05	SEGE 9925 EI 9	0 14 0200 0150
284 474 4 41	182 359 91 9	9 # H	712 507 627	819 6X5 T UZ	6 15 101 8 9 C	651E 909E ET Ø
10 0 10 5 90 1	501 665 1 9		261 29E 11 Z	20 0 1491 1213	9455 5545 11 9	6101 #FEL 21 0
18 v 130 0 1350	1945 9815 8 8	21 5 434 255	1 IN 53PN 5554	9961 /SPI MI WT	2410 5950 41 9	4461 CHAI 11 A
29P1 6101 5 61	626 126 6 9	C// C20 1 12	6/6 600 6 /	9/01 E96 4 01		
CAL CIN 2 OT	0965 3085 N 0				3003 8623 8 8	1400 0050101 0
TAAT ACCT ST ST				APAP GATE T AP	CAT ACUI # #	8878 8NAT 9 S
		CTIT MARI A PI	225 LOY L L	ANT PAA A 81	2552 1200 Z - J	929 ASOL 8 N
APA 0CP NT AT	854 854 1 9	789 7EV 5 6T	969 <u>5</u> 09 9 L	9ISI EESI E RI	SEJUIUUSEI9 8	0 1 3538 1913
14 P 5412 \$551	2871 7501 0 8	19 V 226 288	689 928 S L	18 S 1963 1959	6591 1959 5 8	0 01015010545
894 TLL 5 0T	0011 SE6 11 V	1481 6511 5 61	262 6 <u>2</u> 9 7 2	956 1931 1 91	6575 9675 7 9	464419596 C A
969£ £25£ 0 01	4 10 PRSS 4848	576 849 1 61	165 831 5 1	SCAT CHUZ A OT	ICCALANDE C A	3655 0005 - 0
255 847 5 91	CERT CACL CL B	CANS CERT AT IT	EE62 4662 2 1	14C2 (882 11 01	EAD-TOATETA O	
W/A 66/ 2 ml	0603 1013 61 6	ETO 450 4 11			20701071210 8	LACALTARCIT R
			PD4 431 1 1	FAAA 7302 01 41	7862 FENA 1 8	11205214015 6
	0341 2041 21 0	AACT AFFL & TI	ANO AIT AL 2	4015 7415 0 91	297 892 71 9	407 4254 I B
TAP STA OF ST	5808 2120 SI A	AAE 510 2 71	5 13 5066 5468	7EEE 515E 1 91	091 EES 219	EII IEII 0 0
3rt 201 EI SI	4 II 929 II V	11 5 5132 1020	5 IS 5000 5010	AROT EETS 8 AI	9 11 1529 1139	34 04 7 X
2000 0581 SI SI	4 IN IS66 1121	5011 2001 1 21	569 615 11 S	10 2 3408 2412	9 14 5452 52929	
E451 20E1 11 21	4 6 3543 2686	595 960 IT SI	146 6141 41 6	9261 1361 m 61	BRIT JOET & G	
5122 8452 6 21	94461131919 #	NT/ NC/ 01 CT	206 840 6 5	-E105 40E5 E 01		
CC2010001ro 21				3400 0030 1 41	PART ANAL T A	196 577 7 16
	2076 1046 2 0	CAA 040 7 21	2021 0821 8 2	HOPT TEAT & AI	855 245 4 4	000 TTD E 15
310 1411 2 21	1585 ATME 4 1	5221 8251 9 51	529 692 7 2	755A 57AP 1 81	012 222 0 A	21 5 8PJ 0P3
9851 2051 0 51	2252 9692 S P	12 2 P25 ##P	1ELI LL91 9 S	18 15 859 915	2951 0211 E 9	51 1 151 9 3 4
1991 8955 2 51	4 41210514591	40 TAD 5 21	5 567¢ 3337	SESI 7621 11 71	6 5 51de 5541	14 4 215 945
5P811#5811# 21	4 3 3465 590A	019 614 1 51	2991 1691 7 5	14 16 1914 1914	8681 6551 1 9	596 567 5 AT
E815 AV6E E 51	965 995 2 8	504 678 MT CT	0952 /112 C C	520 En4 0 61	4043 0H3C 0 D	
491 469 2 21	1000 3000 1 .	ANGT OUNT CT CT	dest itel 3 c	5201 3301 / b1	3161 3631 17 6	272 100 9 01
4201 MAUT 1 21	40202300221 0			3946 6686 4 76	CTAP COST TI A	204 120 4 81
		4041 2772 C1 21	2021 0401 1 2	1021 221 2 01	959 869 91 8	2771 8281 11 71
CACAPACTAIN SI	CAAP FTSP AT S	NEA 897 11 21	9221 4041 41 E	981 9851 5 91	605 057 SLV	159 515 9 21
444 454 21 81	009 195 51 2	EZS 655 01 ET	959 550 DI E	1401 0251 1 01	252 392 322	1911 6911 L II
1021 5501 EI 91	8151 0291 EL 2	13 8 1151 1488	2 13 1443 1459	14 0 1616 168 VI	5252 2542 11 0	111 929 9 11
10 11 1104 145P	8951 9911 51 5	12 0 1056 120	2 15 1626 1929	674 559 51 21	1647 9447 AL D	565 995 C /1
10 13 138 8 1494	2 11 442 311	6641 6641 5 51	256 459 11 5	sta uso 21 21	101 / 11 A B	
19 9 19 39 1949	191 916 01 2	869 t99 8 CT	COCT POTT & C	201 649 11 31	ATAT THAT IS A	
ALSP 9992 / AL	CANT PACE 0 2		2012 0202 0 0	CCC1 00mt 41 51		0401 010 1 LI
964 126 0 AT	1053 5153 1 3			1331 7781 01 61	SECE TANG T A	siel een t Lt
		8101 470 1 Fr	AAT 747 7 F	226 227 0 61	6661 5691 5 V	616 IN <u>6 EI S</u> I
CLIC WLIC 1 UI	NATI 1571 A 5	408 EIA 11 II	810 055 9 E	15 6 1515 1122	£89 £05 0 D	15 15 1421 1468
AFTI AGTI S MI	910 LAD 2 5	197 610 OI II	1605 8171 2 E	15 e 311 112	4 3 3524 3190	E4E1 IS21 II SI
5405 1155 1 of	<u>7121 5721 8 5</u>	11 0 1500 1315	3 4 923 868	15 2 206 636	5691 6221 2 0	121 9251 91 51
10 ~ SIV D 5541	9051 9251 £ 2	11 9 3034 5933	2605 2111 2 2	540 560 5 PT	Stat alsi t #	579 11E A EL
9721 1761 01 8	5 5 1999 1142	167 995 / II	1172 AACT 1 C	1211 6/11 2 21	2236 6246 4 6	
867 619 91 8	9961 9912 1 2	2/11 /621 9 11	76/1 03/1 01 1	AC13 36C3 0 31		
914 /201 CT 0	ICTI AGAT A 2				The The ALC	114 P14 T 21
164 126 31 5		*** 070 E 10	284 079 21 1	4461 0011 21 171	274 874 21 5	911 961 9 9 1
	STOL 110 11 C	0116 0116 C 11	2126 1206 VI 1	850 84T BI NI	826 917 41S	1541 0591 S SI
LIAT PART IT A	0121 1851 AL D	REAL SETL 1 11	945 04 <u>5 Et i</u>	16 13 1551 1199	598 876 ELS	12 # 1952 IVI#
625 E25 ØI 9	059 619 51 D	6111 1551 91 6	1 15 5060 SM12	10 15 200 121	5 15 931 166	12 2 294 154
9 6 698 655	92ET 0251 61 8	9 14 5188 555 2	487E ITIA 91 1	10 11 1951 1913	985 #55 11 2	12 5 5288 5155
9 9 5531 5540	0 12 1265 1240	A 15 1992 1901	1 0 1924 1052	14 IN 2442 5861	525 4005 AL 2	CONT CCCT T CT
EAST 1091 / 0	264 464 21 6	108 504 11 A	1415 9995 9 1	9601 0/61 0 01	11n1 3001 0 3	030 CCh h1 C1
6A. 695 9 P	2952 H1/2 11 M	6405 4055 31 4	0502 0401 0	04+3 T/03 /	5447 CL75 0 C	
ILA PART C. O	ANTI CITT AT A	AGUT GAAT & -	4601 0001 6 *	70VC 1476 L (1)	ANNI CARI L C	erer Pist EL EL
046 COC 6 0	4137 (331 4 4			AAR FOR A OL	04C 177 260	12 11 5326 5129
	0.01 2001 0 0	REAC TONE A P	8121 2921 7 T	481 948 E 91	5 2 599 vid	12 10 209 201
BRIE AGIE E B	10CE EDEE 0 0	155 L 6	204 878 E.I	18 d 311 13d	895 945 7 2	12. 4 249 946
4 5 1134 TI41	8275 5275 T b	198 559 6 9	1 5 2334 2921	16 2 SUPI SUIS	5511 6651 5 5	12 0 2620 5126
99p1 450 I 9	0 2 IS9P 1PIL	0151 1671 5 6	1 1 5095 5131	16 5 5245 5426	5 5 5011 5054	ALDI LASI / CT
8 0 5923 5101	990 IUS 7 0	1201 1101 0 6	04 04 7 V	BOOL NEEL I AT	1994 199	1202 0022 0 51
P 10 1560 1286	11/1 9090 5 0	512 /15 5 4		NAME OFIC 1 AT		Leve 1766 7 11

CsZr⁶I^{J4} (Crystal I) F₀E_c x 10

.

113

CsZr₆I₁₄ (Crystal 1) F_oF_c x 10

18 3 1300 1553	9 2 47 <i>8</i> 476	9 8 4224 365p	8 11 5778 5722	1 10 489 538	11 11 1169 1265	4 10 9728 8879
18 6 404 619	9 3 337 435	J 9 72P9 6527	8 12 3998 3720	1 11 970 1033	11 12 1025 1109	4 11 3461 3121
18 7 1391 1451	9 4 486 486	P 10 5658 4950	8 13 3382 3145	1 13 2338 2396	13 3 2078 2040	4 13 2757 2616
18 8 1115 1121	9 5 773 847	4 11 7236 6865	8 14 3729 3746	1 16 2200 2424	13 4 390 467	4 14 5527 5513
20 0 6346 6283	9 6 1900 1853	8 12 5369 4630	A 15 2952 3164	3 1 462 615	13 5 1848 1748	
20 2 471 679	9 7 1153 1304	Ø 13 4142 3487	10 0 3404 3178	7 3 987 1067	17 6 7/3: 434	6 1 75¥ 304
20 3 1932 2003	9 8 734 712	J 14 STAR SHIA	10 4 804 778	3 3 3760 3700		6 1 303 344
20 A 5453 6218	0 0 7071 3860	0 15 3530 361		3 3 2100 214r	13 / 146/ 1403	0 2 1024 1004
38 E 1300 1104	0 10 1000 1049	4 13 3374 3346	10 5 003 844	3 4 00/ /42	12 4 414 421	e 2 1668 421
E8 2 1500 (144	9 10 1020 1007	6 16 1776 1868	14 3 0/3 756	3 5 2106 22/4	13 10 376 356	b 4 765 1018
· · · ·	4 15 441 250	2 N 1754 1447	10 4 /16 852	3 6 856 786	13 11 976 1122	6 5 1010 945
	4 14 1214 1344	e 1 /50 45/	14 6 317 438	3 7 2084 2171	13 12 523 505	5 6 1476 1649
K L PU PC	11 1 1260 827	2 2 42M 4N2	10 7 1331 1187	3 8 552 359	15 1 1908 1827	ь 7 399 142 .
1 1 2411 3530	11 2 472 592	2 3 877 1142	14 8 2689 2670	3 9 618 422	15 8 712 849	6 1J 1697 1 699
1 2 560 732	11 3 1052 914	2 4 2732 2758	18 10 1214 1260	3 10 883 852	15 9 1946 2084	6 11 852 879
1 3 702 723	11 4 1170 1046	2 6 1306 1353	10 12 463 694	3 11 1705 1471	17 1 392 451	6 12 562 549
1 5 1255 1427	11 6 371 333	2 7 1234 1162	10 13 676 886	3 12 752 862	17 2 1113 1201	6 14 1398 1586
1 6 1925 2096	11 7 973 947	2 8 2176 2085	12 0 1646 1266	3 13 549 543	17 5 469 644	A # 3634 3248
1 7 1363 1568	11 8 548 681	2 9 351 89	12 1 297 152	3 14 1583 1629	17 6 642 727	A 1 421 426
1 8 1064 928	11 11 1485 1462	2 12 1099 1147	12 2 1364 1422	3 15 1586 1694	17 7 652 434	A 2 994 1295
1 9 3166 3110	11 12 1597 1612	2 13 971 928	12 4 1539 1443	5 1 413 320	17 8 1837 1844	A 1 1378 3804
1 10 1640 1590	13 1 1881 1649	2 14 431 732	12 6 2349 2374	5 1 1146 7148	10 1 001 1010	H E 1438 1446
1 14 1428 1413	13 3 1067 1073	2 15 705 AA1	13 7 748 600	3 3 3140 3340	19 1 991 1039	0 3 1020 1403
1 17 1522 1416	13 4 688 691	2 15 705 04) 2 16 1377 1556	13 18 841 448	5 4 377 312	19 2 1203 1319	0 / 1220 10/0
T 1 T478 T351	12 6 1773 1647	C 10 13/7 1350		3 3 3130 3204	14 4 516 540	0 0 1014 1043
3 3 510 JEEL	13 3 706 3300	4 8 3/12 38/4	14 4 1434 12/1	3 6 1443 1366	14 2 226 225	8 9 1450 1329
	13 / 763 674	4 1 201 204	14 4 3042 3576	5 7 2150 2169		E 14 1850 1785
3 4 10/3 1243	13 - 1624 1436	4 2 1510 1405	10 9 1411 1441	5 9 1685 1457	h = 10	8 11 1886 1856
3 3 3340 3443	15 11 1704 1601	4 4 3764 4038	14 9 448 170	5 10 446 465	K L FG FC	13. V 3248 2922 -
3 7 1215 1193	12 15 412 1041	4 5 372 225	14 10 1386 1286	5 11 1385 1295	e 0 4727 4636	19 1 2358 2082 -
3 8 1564 1495	13 13 2216 2388	4 h 4518 4459	14 12 10P3 1228	5 13 1132 1074	0 1 1250 1257	14 2 1624 1h64 :
3 9 1634 1301	15 1 985 996	4 7 663 691	16 0 4808 4211	5 14 1461 1690	2 2 1531 1492	10 3 1441 153P
3 10 294 33	15 2 507 324	4 8 1943 1836	16 1 4844 4443	5 15 2029 2221	0 3 4215 4306	18 4 749 562
3 11 24#2 2265	15 3 1378 1285	4 10 1167 938	16 2 5128 4569	7 1 1152 1923	1645 4555 2 4	10 7 2645 2459
3 12 1722 1723	15 5 2952 2947	4 11 614 618	16 3 5481 5230	7 2 1450 1339	2 6 876 578	14 8 1492 1486
3 13 1855 1889	15 9 546 681	4 12 613 546	16 4 2565 2328	7 3 454 367	P 7 2064 1956	10 10 2318 3840
3 14 409 411	15 10 573 629	4 13 834 MQA	16 5 4443 4376	7 5 1408 1267	4 A 3114 3334	
3 16 1468 1563	15 11 925 882	4 14 2843 2863	16 6 3311 3056	7 6 1050 1013	0 0 1875 1445	14 13 000 1413
5 1 3634 4019	15 12 375 314	4 16 630	16 7 1736 1687	7 8 3346 3130	0 44 3680 3643	10 13 400 1013
5 3 1502 3345	17 1 743 441	6 4 1393 1390	16 8 38EA 373E		10 2030 2013	12 9 968 988
S 4 931 917	17 7 7 765 497	6 7 436 443	10 0 2014 2/23	7 9 1733 1543	2 11 2017 2118	15 1 3053 3454
5 5 5440 Salt	17 5 1050 1110	6 0 0373 084E	16 4 3410 3422	7 13 1308 1340	M 14 403 470	15 510045 4115
5 6 785 680	17 6 838 1016			/ 13 402 320	2 0 2011 2324	12 3 2751 2444
5 7 1196 140E	17 7 680 700	0 0 2400 2424	10 0 1420 1434	9 1 15/4 1462	2 1 1/1/ 1/1/	12 5 3362 3093
2 8 1048 1744 7 1 1140 1663	17 0 1000 109	0 1 147 030	10 2 423 646	Y 2 2444 2518	2 2 1964 2059	12 6 9125 8470
5 0 1900 1742	17 4 1664 IN/N	0 16 1504 1548	18 3 465 475	9 3 511 460	2 3 697 665	15 1 5252 2564
3 4 2241 1444	11 16 435 1845	0 12 1463 1464	10 4 526 687	9 5 2305 2246	2 5 457 506	15 .9 1996 2005
5 11 2/03 2430	19 1 369 294	6 13 509 775	18 6 520 496	9 6 1885 1717	2 6 822 881	12 10 5801 5846
5 12 1488 1487	19 3 878 1074	6 14 1679 1801	18 7 754 787	9 7 1187 1110	2 7 1824 1823	12 11 1498 1614
5 13 3150 3496	19 4 583 609	6 15 563 519	18 8 1704 1765	9 8 3436 3122	2 8 1187 1205	14 2 1277 1328
5 16 1448 1762	19 7 461 578	6 16 1092 1396	20 2 554 895	9 9 551 609	2 10 2415 2482	14 3 1157 1473
7 1 336 498		8 0 5562 5263	28 3 394 408	9 10 576 717	2 13 869 652	14 4 971 1044
7 2 370 40	M # 8	8 1 8267 7511		9 11 .963 1138	2 14 597 809	14 5 776 799
7 3 1327 1579	* L FO FC	8 2 8919 7465	H = 9	9 13 1956 2018	4 1 3361 3462	14 6 1368 1451
7 5 3128 3196	8 N 5591 471N	8 3 9803 9147	K L FO FC	11 1 1490 1543	4 21301113820	14 10 964 1168
7 6 1159 1147	e 1 9196 8981	8 4 6629 6183	1 1 874 1395	11 2 1884 INB1	4 3 4887 4455	14 11 848 949
7 7 860 988	0 2 9371 9374	8 5 8944 7330	1 2 2637 3313	11 3 1007 1020	4 4 765 AGA	16 3 1308 1872
7 8 499 476	0 31623912430	8 6 7170 6509	1 3 989 AKI	11 4 750 ALL	4 5 5207 AALA	16 T 867 084
7 10 1454 1323	6 4 9325 9324	8 7 6083 5910	1 5 3310 2401	11 7 1437 1411	a A1243111647	16 A 265 443
7 11 6/3 458	P 5 909A 9091	A A 4126 3410	1 6 2045 2001	11 8 044 013	4 0164311130/	14 4 330 003
7 13 1459 1502	0 & 8515 AT17	A G 574A 5470	1 7 838 084	11 0 488 944	4 7 6103 1433	10 3 4/1 010
6 1 2746 2747		8 10 8460 e743	1 8 3174 7404			10 4 400 103
7 1 EI 40 E/4/	~ / /143 /6//	* 10 3477 4/12	1 0 3310 3884	11 16 1116 1673	4 Y 3201 2940	17 2 1624 1834

18 1 1108 1256	11 7 1167 1119	A 12 046 1264	1 8 833 074	M = 44	14 13 0 0 0 0 0		н = 18
18 2 727 944	11 10 1269 1117	4 13 984 1054	1 11 1777 1725		10 V 444 401	4 3 14r4 1490	K L FO FC
18 3 834 917	11 12 462 676	4 14 927 956	1 12 582 726	0 0 3224 2942	· H # 15	4 4 1373 1391	0 0 1679 1723
	13 1 440 496	6 8 1543 1599	1 13 1165 1338	0 1 720 802	K L FO FC	4 9 1169 1203	· · · · · · · · · · · · · · · ·
H = 11	13 2 1774 1849	6 1 1742 1824	3 1 1849 2043	0 2 1619 1673	1 1 545 594	4 14 1226 1458	B B 643 744
K L FO FC	13 3 599 88	e 5 180e 5058	3 2 1604 1518	2 4 2665 228P	1 2 575 659	b 2 1636 1749	A 6 647 384
1 1 3170 3168	13 5 964 898	6 3 1657 1499	3 3 935 999	8 5 549 148	1 3 2671 2495	6 1 1251 1835	8 7 616 705
1 5 1992 5059	13 8 927 998	5 6 504 998	3 4 605 620	0 6 3506 3282	1 5 3085 3150	6 7 1398 1427	B B 944 1274
1 3 969 1252	13 10 2130 2281	6 7 2521 2323	3 5 1415 1419	P 7 1267 1240	1 7 1651 1498	6 8 1048 1226	2 1 478 347
1 4 1700 1663	13 11 461 678	6 6 646 1001	3 6 1899 1715	P 6 1926 1576	1 9 1053 1046	6 17 966 1 29 2	2 2 1367 157P
1 0 15/3 1543	15 1 1150 1154	6 10 1517 1712	3 7 803 835	@ 9 430 535	1 10 947 973	8 1 11NP 1099	2 6 537 473
1 9 3361 3361	15 2 504 487	0 11 /4C /04	3 6 1030 1547	0 10 502 425	3 1 1059 1120	8 2 7237 7269	2 7 407 489
1 11 1715 1828	15 6 686 770	A 010895 9880	3 7 2134 2042 3 13 883 484	2 4 1313 2011	3 3 407 473	0 3 403 330	4 # 4558 3984
1 12 2843 2624	15 8 1177 1320	A 1 4097 1994	3 12 1003 1041	2 N AT1 1070	3 4 463 507	0 4 1038 1903	4 1 3852 3916
3 2 1840 1837	15 9 489 742	8 3 2958 2810	5 1 2531 2458	2 8 918 1189	3 A 106A 1225	A . 5413 5530	4 3 1529 1566
3 3 1230 1091	17 1 1981 1289	8 4 9491 9166	5 2 2263 2318	2 12 1185 1443	3 9 991 1164	A 7 513 493	9 4 7548 3556
3 5 2026 1699	17 2 431 575	8 5 3222 3477	5 3 476 599	4 0 4885 4621	5 3 978 1062	8 9 534 423	4 2 5014 5052
3 6 563 469	17 3 406 485	8 6 735 90	5 4 1841 981	4 1 6912 6427	5 5 1976 1851	10 0 828 724	A 7 1183 1981
3 7 859 840	17 4 493 703	5 7 3104 2956	5 5 578 774	4 2 3788 3152	5 8 1302 1265	10 1 719 727	A A A41 1410
3 8 1955 946	17 6 496 558	5 8 8681 7619	5 6 2626 2438	4 3 4927 4464	7 2 398 401	16 3 552 427	A 2 1249 1535
3 10 2508 2525		8 9 3371 3495	5 7 641 864	4 4 6242 6012	7 3 1690 1578	10 4 1574 1017	4 3 1996 1930
5 12 436 373	M = 12	8 11 1135 1126	5 8 2158 2060	4 5 5169 4693	7 5 1678 1607	18 5 570 445	4 4 718 629
3 13 330 344		8 12 4897 5027	5 9 2385 2460	4 6 3407 3063	7 7 1333 1567	14 6 1439 1650	6 5 426 537
3 14 1277 1404 T 16 817 800	0 01143/11810	8 13 1985 2011	5 12 1157 1251	4 7 6426 6193	7 18 736 857	12 7 632 789	8 6 476 541
5 1 310 335	6 1 8010 3484 ×	10 2 15/7 1045	5 13 447 664	4 8 3679 3333	9 1 761 743	12 8 615 794	♣ Ø 1586 1719
5 2 3147 3190	0 3 6446 5319			4 4 3464 3207	9 2 427 548	12 1 388 393	4 3 934 1007
5 & 5AR 624	a 5 4337 3476	10 6 1000 080	7 2 034 434	4 10 EVEC 1040	A 2 5514 5105	12 2 538 518	4 1077 1196
5 5 1263 1302	P 6 1351 100	10 5 880 1005	7 3 13/3 1243	4 11 3074 3037 A 13 3747 3680	9 7 1487 1107	15 2.1454 1458	14 1 537 645
5 6 354 382	0 7 4664 4289	14 9 473 549	7 5 690 201	4 12 3303 3330 6 2 2065 2050	9 9 1990 1991	4 4 17	
5 8 2015 1681	8 810362 9180	10 10 934 1230	7 7 1802 1720	6 1 796 883	11 1 2073 2075	K I FO FC	M 8 19
5 18 3342 3133	a 9 3934 3511	19 11 1099 1230	7 11 1420 1539	6 3 703 771	11 2 419 372	1 1 1391 1451	
5 12 1051 1090	0 11 774 756	10 12 779 1133	7 12 1281 1463	6 4 1481 1441	11 3 403 448	1 3 437 429	1 1 1300 1432
5 13 447 664	Ø 12 5977 5792	12 0 2177 2184	9 1 1415 1214	6 7 948 861	11 8 633 934	1 5 399 539	1 6 440 780
5 14 1383 1476	8 13 2774 2633	12 2 358 460	9 4 473 344	6 8 1866 1920	13 5 756 443	1 7 646 484	1 6 1211 1281
7 1 2446 2329	2 @ 1310 1335	12 3 1696 1640	9 5 1434 1523	6 12 788 1002		1 9 1463 1549 ;	3 1 531 575
7 3 1034 1154	2 1 884 839	12 5 623 698	9 6 1144 1724	8 0 2172 1944	H # 16	3 1 1792 1622	3 3 1988 1289
	5 5 5502 5040	12 8 1266 1471	9 7 1423 1399	8 2 1486 1518	K L FO FC	3 2 1043 1091	3 5 824 858
7 7 783 1400	C 3 004 743	14 0 1223 1248	9 11 1251 1365	6 4 1549 1468	0 0 590 527	3 3 6810 997	5 3 847 1022
7 8 1267 1140	2 7 919 924	14 2 1300 1470	11 S 1101 1037	A 7 ADA 71A	3 3 9381 4744	3 4 434 413	7 1 1139 1390
7 9 1548 1579	2 A 615 A39	14 3 1660 1859	11 7 497 440	A A 1110 1042	0 2 919 75-	3 9 343 004	
7 11 1375 1491	2 9 425 485	14 7 1495 1981	11 8 443 522	10 0 474 475	U 4 2950 282A	J 1 1030 1212	N # 50
7 12 965 1187	2 18 1566 1629	14 8 402 814	11 9 643 801	10 4 3177 3078	0 5 1724 1549	5 1 2182 2241	K L PU PC
9 1 2630 2491	2 11 496 496	16 0 5669 5548	11 10 430 638	10 6 1162 1419	0 6 6985 6116	5 2 1637 1565	M N 3007 3724
9 2 2097 2000	2 13 802 1027	16 1 1989 1778	13 1 1698 1533	10 10 943 1013	0 9 1154 925	5 3 385 546	B 3 434 686
9 3 814 879	4 0 3487 3396	16 2 601 358	13 2 1553 1355	12 0 4372 4081	0 10 6812 6855	5 4 1089 1100	2 H RAQ 1143
9 4 1633 1527	4 1 1070 1022	16 3 2475 2640	13 4 380 596	12 1 4456 4291	2 1 1196 1185	5 6 1912 1078	2 1 853 866
9 6 1576 1620	4 2 445 599	16 4 5687 5788	13 5 469 584	12 2 2596 2378	2 2 575 784	5 7 1028 1113	
▼ 7 603 757	4 3 3934 3595	10 5 2039 2163	13 6 1576 1636	12 3 3722 3685	2 4 1299 1366	7 1 672 878	
4 4 1050 1423	4 4 /15 896		15 6 1938 1256	12 4 3731 3567	2 5 667 661	7 3 905 1072	
- 10 021 772	4 5 1364 1314 4 6 747 490	N # 15 K I #0 F0	15 9 1498 1643	12 5 3445 3493	2 6 1335 1419	7 5 1288 1453	
9 12 2298 2520		1 1 1886 1498	10 1 410 340	15 0 1031 1/04	c / 1190 1227	7 6 641 925	
11 3 1511 1364	4 8 2167 2257	1 1 1000 10/3	15 2 1307 1300	12 / 3073 4014 13 A 3410 3465	- 0 2073 2146 4 1 475 100	7 7 597 784	
11 4 567 482	4 9 654 458	1 5 1219 1157	15 5 784 484	14 0 1460 19043		2 2 411 1446 7 1 1461 1446	
11 5 2219 2011	4 10 551 569	1 6 988 878	15 6 759 875	14 1 587 709	4 3 2202 2135	11 1 595 737	
11 6 1469 1401	4 11 22A9 2246	1 7 2129 1844		14 4 456 687	4 4 514 385	11 3 950 1432	

CsZr₆I₁₄ (Crystal I) F₀F_c x 10

 $CsZr_{614}$ (Crystal 2) $F_0F_c \ge 10$

	-2 0 347 211	0 10 765 427	3 8 1639 1863	13 9 2094 2056	6 A A548 4357	16 2 1145 1162
⊀ L FO FI	-1 13 267 306	6 12 418 472	3 9 2107 2142	13 10 2120 2450	6 1 3705 3708	
-2 3 376 401			3 4 5101 5105	13 10 6160 6034	0 1 6140 6140	10 3 1034 1040
	·	0 14 303 344	3 10 2314 2221	15 1 788 779	6 2 2155 2094	16 6 342 592
•2 5 /0/ //	H # =4	8 112666425845	3 11 537 472	15 2 1723 1692	6 3 3706 3380	16 7 1455 1420
	K L FD FC	8 41664414638	3 12 1285 1226	15 3 733 734	A A 254 85	18 2 247 578
H ==15	-16 V 487 291	A & 3047 3866	1 17 E3E 704	18 E 844 047		
	-8 13 548 709		3 13 333 700	13 3 848 883	0 / 3321 30/1	10 4 1674 1655
	40 16 300 340	0 019/3/10020	3 14 2357 236b	15 6 754 840	6 8 25PR 2476	
•/ 4 226 9	-6 4 373 768	8 10 1578 1479	5 1 4139 4339	15 8 2415 2364	6 9 786 776	H # 3
-1 6 378 48	-6 5 462 595	8 1210442 9985	5 2 4396 4220	15 9 943 1002	6 10 2554 2546	X 1 50 50
		14 4 3388 4767	6 4 1437 1404	17 7 774 107		
a a_13	N n -7		3 4 1037 1474	17 2 330 447	6 11 11EV 1266	1 1 2003 2931
	H • • • • • •	16 6 367 105	5 / 1220 14/2	17 3 847 936	6 12 812 909	1 2 1859 1711
N L PV PI	. K L FO FC	18 4 5825 5785	5 8 2265 2224	17 5 2343 2367	6 13 2104 2096	1 3 2895 3182
-9 4 351 300	-9 10 233 76	10 6 4239 4238	5 9 3769 3741		8 1/ 335 425	1 6 3030 3044
-7 6 286 410	-5 14 484 382	10 10 2211 2082	5 10 2787 2740	H = 2	8 1 104	1 7 3440 3444
-1 2 263 35:	-1 5 432 444	14 13 1607 1604	5 13 1ETA 1537			1 / 2107 2114
-1 4 400 550	-1 0 335 145	17 16 1603 1044	3 15 13/4 138/	K L FU FC	0 4 1566 1480	1 8 1901 1546
	-1 - 263 100	16 0 227 111	5 13 257 162	0 0 2358 2138	8 3 517 666	1 11 2973 2951
M 2415	-1 10 244 268	12 2 7AP 782	5 14 2556 2587	0 1 1308 1122	8 4 2163 2475	1 14 1791 1742
FO FI		12 4 1891 1850	7 1 469 37	Ø 2 1802 1664	A 5 454 611	1 16 1363 1330
-10 1 292 27/		12 6 1701 1776	7 3 1670 1543	3 7 047 704		
-4 14 297 48	N 1 60 50		1 5 1014 1345	8 2 441 141	0 0 5400 5154	5 1 2354 2735
44 [0 247 40]	N L PO PO	15 4 420 1025	7 3 568 792	0 4 4198 3882	8 7 393 352	3 2 3012 2799
	-6 14 353 21J	12 19 588 559	7 4 296 90	0 5 1091 928	8 8 429 112	3 3 278 670
H #=15	-2 11 253 335	14 0 2190 2179	7 5 2052 2428	0 6 3458 3353	- A 4 454 443	3 4 724 648
K L FO FO	0 15 259 277	14 2 1279 1324	7 6 598 712	7 7 843 1413	A 14 377 443	3 8 3044 3684
-13 1 302 36		14 4 737 307	7 8 3140 3054	0 0 010 1013		3 3 3441 6300
	14 m - 4	14 4 367 677	7 8 3184 3038	6 0 9/8 1100	0 11 073 000	2 0 5010 5404
		14 0 320 374	/ 11 812 807	0 9 341 274	8 13 995 995	3 7 1022 1005
H Selv	K L FO FC	14 8 1974 2064	7 12 1238 1199	0 10 327 215	10 0 567 855	3 6 3160 3171
K L FO FO	-15 A 256 163	14 10 1137 1234	7 13 548 610	P 11 1856 1792	10 1 545 565	3 13 479 536
-12 4 266 260	-1 b 286 274	16 01258412053	7 10 458 542	0 13 440 404	14 3 684 689	3 14 3566 3533
		14 3 874 808		C 12 000 074	10 2 304 300	3 11 2340 23/3
H0		10 5 034 040	7 1 2327 3241	6 12 164 121	18 3 431 401	3 13 1531 1496
		10 41145214667	9 3 2667 3136	0 14 2127 2294	10 4 3172 3110	3 14 410 524
K L FO FO	. K L FO FC	16 6 1223 1380	9 4 916 929	2 0 1715 1563	18 5 688 652	5 1 3534 3685
•7 3 337 30	N 2 577 191	16 8 9144 8592	9 5 5608 5812	2 1 1126 1450	19 6 1916 1985	5 3 5137 AA38
•7 3 337 303 •7 7 332 220	9 2 577 191 P 4199741972P	16 8 9114 8592	9 5 5608 5812	2 1 1126 1050	18 6 1915 1985	5 2 5127 4028
•7 3 337 303 •7 7 332 220	9 2 577 191 9 41997419720	16 8 9114 8592 18 9 1441 1238	9 5 5608 5812 9 6 247 312	2 1 1126 1050 2 2 1521 1366	10 6 1915 1985 10 7 321 407	5 2 5127 4628 5 3 397 611
-7 3 337 30 -7 7 332 220 -5 2 300 381	0 0 2 577 191 0 41997419720 0 6 5858 5529	16 8 9114 8592 18 0 1441 1238 18 2 279 599	9 5 5608 5812 9 6 247 312 9 7 359 513	2 1 1126 1050 2 2 1521 1366 2 3 1491 1428	10 6 1915 1985 10 7 321 407 10 9 305 254	5 2 5127 4628 5 3 397 611 5 4 1371 1284
-7 3 337 30 -7 7 332 220 -5 2 364 38 -5 4 419 464	9 9 2 577 191 9 9 997419720 9 6 5858 5529 9 62131821497	16 8 9114 8592 18 6 1441 1238 18 2 279 599 18 4 3393 3505	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134	2 1 1126 1050 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363	10 6 1915 1985 10 7 321 407 10 9 305 254 19 10 325 311	5 2 5127 4828 5 3 397 811 5 4 1371 1284 5 5 3215 3632
-7 3 337 30 -7 7 332 220 -5 2 304 38 -5 4 419 464 -3 9 364 334	0 0 2 577 191 0 41997419720 0 6 5858 5529 0 82131821497 0 10 3062 2984	16 6 9114 8592 18 0 1441 1238 18 2 279 599 18 4 3393 3505	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1074	2 1 1126 1050 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531	10 6 1915 1985 10 7 321 407 10 9 305 254 10 10 325 311 10 11 1186 1159	5 2 5127 4028 5 3 397 011 5 4 1371 1284 5 5 3215 3032 5 6 3955 5051
-7 3 337 30 -7 7 332 220 -5 2 364 38 -5 4 419 464 -3 9 364 33	0 2 577 191 P 4199741972v 0 6 5858 5529 V 6 5858 5529 0 1131821497 V 6 7815821497 0 14 31622988 V 14 31622988 14 31622988 V 121189011598 1598 1598	16 8 9114 8592 18 0 1441 1238 18 2 279 599 18 4 3393 3505 H = 1	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1078 9 10 589 578	2 1 1126 1050 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531 2 6 1619 1555	19 6 1915 1985 10 7 321 407 10 9 305 254 19 10 325 311 10 11 1186 1159 10 12 1079 1095	5 2 5127 4628 5 3 397 611 5 4 1371 1284 5 5 3215 3632 5 6 3955 5051 5 7 1803 1547
-7 3 337 397 -7 7 332 291 -5 2 304 38 -5 4 419 464 -3 9 364 337	0 4 2 577 191 9 41997419720 4 6 5858 5529 9 82131821497 9 10 3062 2984 10 121189011598 9 14 3518 3399	16 6 9114 8592 18 6 1441 1238 18 2 279 599 18 4 3393 3505 H # 1 K 1 50 50	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1474 9 10 589 578 9 1043 1424	2 1 1126 1050 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531 2 6 1619 1555 2 7 1445 1745	19 6 1915 1985 10 7 321 407 10 9 305 254 19 10 325 311 10 11 1186 1159 10 12 1079 1095	5 2 5127 4028 5 3 397 011 5 4 1371 1284 5 5 3215 3052 5 6 3955 5351 5 7 1503 1547
-7 3 37 37 -7 7 352 22 -5 2 304 38 -5 4 419 46 -3 9 364 33 H = -8 K L L0 F	4 2 577 191 4 2 577 191 5 3 9741972 5 4 979741972 5 4 9 9741972 5 4 9 9741972 5 4 9 9741972 5 4 9 19741972 5 4 9 10 3192 2984 5 121189011598 5 121189011598 5 121359 3399 5 1212 2985 5 121	16 6 9114 8592 18 9 1441 1238 18 2 279 599 18 4 3393 3505 H = 1 K L FD FC 1 1 3095 F00	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1474 9 10 589 578 9 11 1636 1626	2 1 1126 1050 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531 2 6 1619 1555 2 7 1465 1765	10 6 1915 1985 10 7 321 407 10 9 305 254 19 10 325 311 10 11 1146 1159 10 12 1079 1095 12 0 3786 3430	5 2 5127 4028 5 3 397 011 5 4 1371 1284 5 5 3215 3032 5 6 3955 5351 5 7 1503 1547 5 8 4645 4537
-7 3 337 30 -7 7 332 220 -5 2 364 38 -5 4 419 46 -3 9 364 33 H = -8 K L F0 F(-14 3 231 32)	0 0 2 577 191 0 0 1997419720 0 6 5529 0 6 5553 5529 0 6 7 191 0 10 3162 2984 1 21189711598 1 121189711598 1 12 18 93162 2938 3399 2 0 2192 2100	16 8 9114 8592 18 9 1441 1238 18 2 279 599 18 4 3393 3595 H # 1 K L FO FC 1 1 3495 2695	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1074 9 10 539 578 9 11 1636 1626 9 12 2071 2033	2 1 1126 1050 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531 2 6 1619 1555 2 7 1465 1765 2 6 1072 1041	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 5127 4020 5 3 307 011 5 4 1371 1204 5 5 3215 3032 5 6 3955 5051 5 7 1503 1547 5 8 4045 4537 5 9 1025 1005
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -3 9 364 334 H E -8 K L FO Ff -14 7 271 221	4 2 577 191 4 4199741972v 4 5858 5529 4 6 5858 5529 4 6 78131821497 4 4 14 3162 2984 4 121189011598 4 4 4 4 3516 3399 2 4 2162 2164 2 2 254 2164	16 A 9114 8592 18 0 1441 1236 18 279 599 18 4 3393 3505 H # 1 K L FO FC 1 1 3495 2695 1 2 308 296	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1474 9 10 589 577 9 11 1636 1626 9 12 2071 2033 9 13 2745 2797	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 5127 4028 5 3 397 611 5 4 1371 1284 5 5 3215 3632 5 6 3955 5451 5 7 1503 1547 5 8 4645 4537 5 9 1025 1065 5 10 381 382
-7 3 337 307 -7 7 332 221 -5 2 304 38 -5 4 419 40 -3 9 364 331 -5 - 4 19 40 -3 9 364 331 -5 - 4 19 40 -14 7 271 221 -12 1 254 161	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 8 9114 8592 18 0 1441 1238 18 2 279 599 18 4 3393 3505 H = 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 1126 1050 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531 2 6 1619 1555 2 7 1465 1765 2 8 1072 1041 2 9 466 518 2 16 882 869	19 6 1915 1985 10 7 321 407 10 9 385 254 10 10 325 311 10 11 1146 1159 10 12 1079 1095 12 4 3788 3830 12 1 7606 6781 12 21093010298 12 39829 9173	5 2 5127 4020 5 3 397 611 5 4 1371 1204 5 5 3215 3032 5 6 3955 5451 5 7 1503 1547 5 8 4645 4537 5 9 1025 1005 5 10 301 302 5 11 3020 3057
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -3 9 364 387 H = -8 K L FO F(-14 7 271 221 -12 1 254 164 -12 6 461 365	0 0 2 577 191 0 199741972v 4 5358 5529 v 62131821407 v 6 5858 5529 v 82131821407 v 802 29884 v 121189041598 v v 121189041598 v v 1221804 202 2100 v v v v 122180 3299 2 v	16 8 9114 8592 18 0 1441 1236 18 2 279 599 18 4 3393 3505 H # 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 10 589 578 9 11 1636 1626 9 12 2071 2033 9 13 2745 2797 11 1 1464 1312	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 5127 4028 5 3 397 611 5 4 1371 1284 5 5 3 215 3632 5 6 3955 5051 5 7 1503 1547 5 8 4645 4537 5 9 1025 1065 5 10 381 382 5 11 3828 365 5 124 1054
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 40 -3 9 364 331 - 4 -8 -14 7 271 221 -12 1 254 164 -12 8 401 361 -6 2 663 37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 8 9114 8592 18 9 1441 1236 18 2 279 599 18 4 3393 3505 H # 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 5536 6667	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1474 9 10 589 576 9 11 1636 1626 9 12 2071 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 934	2 1 1126 1050 2 2 1521 1366 2 3 1491 1420 2 4 2454 2363 2 5 584 531 2 6 1619 1555 2 7 1465 1765 2 8 1072 1041 2 9 486 518 2 16 582 669 2 12 1065 1113 2 13 455 1365	19 6 1915 1985 10 7 321 407 10 9 385 254 10 10 325 311 10 11 1146 1159 10 12 1079 1095 12 4 3788 3830 12 1 7666 6781 12 21093010298 12 3 9820 9173 12 4 4244 3843 12 5 7281 443	5 2 5127 4020 5 3 397 611 5 4 1371 1204 5 5 3215 3632 5 6 3955 5451 5 7 1503 1547 5 8 4645 4537 5 9 1025 1005 5 10 301 302 5 11 3020 3057 5 12 1124 1055
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -3 9 364 337 M = -8 K L FN F(-14 7 271 221 -12 1 254 164 -12 8 461 361 -6 2 663 374 -6 9 225 174	9 9 2 577 191 9 4199741972r 4 5358 5529 9 82131821497 4 5358 5529 9 82131821497 4 3162298a 4 11 211809011598 4 3596 2 2 9 14 35163 3599 2 2 2 2 4 12 2 2 854 741 2 2 854 741 2 2 8512 4873 3649 2 512 3649 2 4 5112 4873 3649 2 4 3149 2 4 3149 2 12 43 3649 3 3649 3 3649 2 2 12 2 12 2 12 3 12 12 12 12 12 12 3 12 12 12 12 12 12<	16 6 9114 8592 18 0 1441 1236 19 2 279 599 14 4 3393 3505 H = 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 5536 6667 1 7 429 44	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 10 589 578 9 11 1636 1626 9 12 2671 2033 9 13 2745 2797 11 1 1464 1312 11 2 1874 934	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S 2 5127 4028 S 3 397 611 S 4 1371 1284 S 3 215 3632 S 6 3955 5051 S 7 1503 1547 S 8 4645 4537 S 9 1025 1065 S 10 361 302 S 11 3028 3057 S 12 1124 1054 S 13 1700 1052
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 404 -3 9 364 331 H = -8 K L +0 F(-14 7 271 221 -12 1 254 164 -12 8 404 361 -6 9 225 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 8 9114 8592 18 9 1441 1236 18 279 599 14 4 3393 3505 H = 1 K L FO FC 1 1 3495 2695 1 2 348 296 1 3 3161 3324 1 4 1285 1167 1 5 636 6667 1 7 629 881 4 7 629 881	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1074 9 10 589 577 9 11 1636 1626 9 12 2071 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 930 11 3 148 1201 11 4 471 489	2 1 1126 1050 2 2 1521 1366 2 3 1521 1366 2 3 1491 1420 2 4 2454 2363 2 5 584 331 2 6 1619 1555 2 7 1465 1765 2 8 1072 1041 2 9 486 518 2 16 882 689 2 12 1065 1118 2 13 1465 1367 2 14 1177 1223	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 5127 4020 5 3 397 611 5 4 1371 1204 5 3 3955 5451 5 7 1503 1547 5 0 4045 4537 5 9 1025 1005 5 10 301 302 5 11 3020 3057 5 12 1124 1054 5 13 1740 1052 7 1 2701 2001
-7 3 337 307 -7 7 332 221 -5 2 364 38 -5 4 419 464 -3 9 364 334 M = -8 K L FO F(-14 7 271 221 -12 1 254 165 -12 8 461 361 -6 9 225 164 M = -7	i 2 577 191 i 2 577 191 i 4 5058 5529 i 6 5058 5529 i 6 5058 5529 i 8 62131821407 i 14 3516 3399 i 14 3516 3399 2 4 2142 2144 2 2 854 741 2 2 854 741 2 4 5112 4873 3 6 348 731 2 6 512 4873 3 7 3647 741 2 4 5112 4873 3 7 1263 721 4 1263 1263 1213 2 12 1302 1295 2 12 1302 1295	16 8 9114 8592 18 0 1441 1236 18 2 279 599 14 4 3393 3505 H = 1 K L FD FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 6536 6667 1 6 2935 2902	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S 2 5127 4028 S 3 397 611 S 4 1371 1284 S 3 215 3632 S 6 3955 5051 S 7 1503 1547 S 4465 4537 S 9 1025 1065 S 10 381 382 S 11 3022 3057 S 12 1124 1054 S 13 1760 1652 7 1 2774 1059
-7 3 337 307 -7 7 332 221 -5 2 364 38 -5 4 419 464 -3 9 364 331 H = -8 K L +0 F -14 7 271 221 -12 1 254 164 -12 6 464 367 -6 9 225 100 H = -7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 8 9114 8592 18 0 1441 1236 18 2 279 599 14 4 3393 3505 H # 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 5536 6667 1 7 629 881 1 8 2835 2932 1 9 1573 1341	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1074 9 11 1636 1626 9 12 2071 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 930 11 3 148 1201 11 4 471 489 11 5 3265 3326 11 6 970 973	2 1 1126 1450 2 2 1521 1366 2 3 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 331 2 6 1619 1555 2 7 1465 1765 2 8 1072 1041 2 9 486 518 2 16 882 689 2 12 1963 1113 2 13 1465 1307 2 14 1177 1223 4 9 3855 3529 4 110066 9574	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 5127 4028 5 3 397 611 5 4 1371 1284 5 5 3215 3632 5 6 3955 5451 5 7 1583 1585 5 7 1583 1585 5 8 4645 4537 5 9 1025 1085 5 10 361 302 5 11 3020 3357 5 12 1124 1054 5 13 1740 1652 7 1 2774 1650 7 2 1774 1650 7 3 1322 1413
-7 3 337 307 -7 7 332 221 -5 2 364 38 -5 4 419 464 -3 9 364 334 -3 9 364 334 -3 9 364 334 -4 7 271 224 -12 1 254 165 -12 8 461 361 -6 2 663 374 -6 9 225 164 -14 -7 271 -6 9 225 164 -12 8 461 361 -6 2 665 374 -6 9 225 164 -14 -7 27 -6 9 225 164 -15 -7 4 -7 51 -6 9 50 51 -7 5 -7 51 -6 9 50 51 -6 5 5 5 5 -7 5 5 -7 5 5 -7 5 5 -7 5 5 -7 5 -	9 9 2 577 191 9 4199741972r 4 6 5858 5529 9 82131821497 4 6 5858 5529 9 82131821497 4 316224984 4 121189494 4 9 14 3516 3399 2 8 2 14 3516 3499 2 4 2192 2164 2 2 854 741 2 4 5112 4633 3649 2 7 4 163 1213 2 1263 1213 2 1263 1213 2 1263 1213 2 1263 1213 2 12132 1213 2 12 1302 1293 1213 2 12 1302 1293 1213 2 12 1302 1293 12 12 1302 1295 12 13757 4 0 412 3757 14 </td <td>16 6 9114 8592 16 0 1401 1236 17 2 279 599 17 4 3393 3505 H = 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 6536 6667 1 629 687 1 8 2835 2902 1 9 1573 1341 1 10 543 327</td> <td>9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1074 9 10 589 576 9 11 1636 1626 9 12 2871 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 934 11 3 1148 1281 11 4 471 489 11 5 3265 3326 11 6 970 973</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>S 2 5127 4028 S 3 397 611 S 4 1371 1284 S 3 215 3632 S 6 3955 5051 S 7 1503 1547 S 4468 4537 S 1025 1025 1065 S 10 381 382 S 11 3028 3657 S 12 1124 1054 S 13 1700 1052 7 1 2774 1059 7 3 1322 1413 7 4 1191 1343</td>	16 6 9114 8592 16 0 1401 1236 17 2 279 599 17 4 3393 3505 H = 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 6536 6667 1 629 687 1 8 2835 2902 1 9 1573 1341 1 10 543 327	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1074 9 10 589 576 9 11 1636 1626 9 12 2871 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 934 11 3 1148 1281 11 4 471 489 11 5 3265 3326 11 6 970 973	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S 2 5127 4028 S 3 397 611 S 4 1371 1284 S 3 215 3632 S 6 3955 5051 S 7 1503 1547 S 4468 4537 S 1025 1025 1065 S 10 381 382 S 11 3028 3657 S 12 1124 1054 S 13 1700 1052 7 1 2774 1059 7 3 1322 1413 7 4 1191 1343
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 404 -3 9 364 331 H = -8 K L +0 F(-14 7 271 221 -12 1 254 164 -12 8 404 361 -6 9 225 104 M = -7 K L F0 F(-15 2 310 314	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 8 9114 8592 18 0 1441 1236 18 279 599 14 4 3393 3505 H # 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 6536 6667 1 7 629 881 1 8 2835 2932 1 9 1573 1341 1 10 543 527 1 11 856 1762	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 1126 1459 2 2 1521 1366 2 3 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 231 2 6 1619 1555 2 7 1465 1765 2 6 1072 1041 2 9 466 518 2 10 882 669 2 12 1465 1397 2 14 1177 1223 4 9 365 3529 4 110766 9574 4 21772516652 4 3176661688	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 5127 4028 5 3 397 611 5 4 1371 1284 5 5 3215 3632 5 6 3955 5451 5 7 1503 1547 5 8 4645 4537 5 9 1025 1065 5 10 381 382 5 11 3020 3057 5 12 1124 1054 5 13 1700 1652 7 1 2761 2801 7 2 1774 1050 7 3 1322 1413 7 4 1191 1303 7 5 134 1354
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -3 9 364 333 H = -8 K L FO F(-14 7 271 224 -12 1 254 136 -12 8 461 361 -12 8 461 361 -6 9 225 10 H = -7 K L FO F(-15 2 310 314 -7 4 264 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 6 9114 8592 18 9 1441 1236 18 2 279 599 14 4 3393 3505 H 8 1 K L FO FC 1 1 3495 2695 1 2 398 296 1 3 3101 3324 1 4 1285 1167 1 5 5536 6667 1 629 687 1 9 1573 1341 1 10 543 527 1 11 1856 1762 1 2025 2026	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1474 9 10 589 576 9 11 1636 1626 9 12 2871 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 934 11 3 1148 1281 11 4 471 489 11 5 3265 3326 11 6 976 973 11 9 681 689	2 1 1126 1457 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 2363 2 6 1619 1555 2 7 1465 1765 2 8 1072 1041 2 9 406 518 2 16 682 669 2 12 1963 1118 2 13 1465 1347 2 14 1177 1223 4 9 3855 3529 4 110066 9574 4 21772516652 4 31766616883 6 4946 8755	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 404 -3 9 364 331 H = -8 K L +0 F(-14 7 271 221 -12 1 254 164 -15 2 643 37 -6 9 225 104 M = -7 K L F0 F(-15 2 312 314 -7 4 264 154	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 8 9114 8592 18 0 1441 1236 18 279 599 14 4 3393 3505 H # 1 K L FO FC 1 1 3495 2645 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 5536 6667 1 7 629 881 1 8 2635 2932 1 9 1573 1341 1 10 554 3527 1 11 1856 1782 1 12 2295 2245	9 5 5608 5812 9 4 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1074 9 10 589 577 9 11 1636 1626 9 12 2071 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 934 11 3 1148 1201 11 4 471 489 11 5 3265 3326 11 6 970 973 11 8 309 413 11 9 681 639	2 1 1126 1459 2 2 1521 1366 2 3 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531 2 6 1619 1555 2 7 1465 1765 2 6 1072 1041 2 9 466 518 2 16 882 689 2 12 1863 1118 2 13 1465 1367 2 14 1177 1223 4 9 355 3529 4 110066 9574 4 21772516658 4 8986 8356 6 666 656	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 5127 4028 5 3 397 611 5 4 1371 1284 5 5 3215 3632 5 6 3955 5451 5 7 1503 1547 5 8 4645 4537 5 9 1025 1065 5 10 361 362 5 11 3020 3657 5 12 1124 1054 5 13 1746 1052 7 1 2761 2801 7 2 1774 1650 7 3 1322 1413 7 4 1191 1303 7 6 541 364
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -3 9 364 331 H = -8 K L FO F(-14 7 271 221 -12 1 254 165 -12 8 461 361 -6 2 653 374 -6 9 225 107 K L FO F(-15 2 312 314 -7 4 264 157 -7 4 264 157	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 6 9114 8592 16 9 1441 1236 17 2 279 599 17 4 3393 3505 H 4 1 FO FC 1 1 3495 2695 1 2 398 296 1 3 3101 3324 1 4 1285 1167 1 5 536 6661 1 6 2835 2932 1 9 1573 1341 1 10 543 327 1 11 1856 1782 1 13 2674 2620	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 404 -3 9 364 331 H = -8 K L FO F(-14 7 271 221 -12 1 254 164 -14 7 271 225 -6 9 225 104 M = -7 K L FO F(-15 2 310 314 -7 4 264 157 H = -6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 5127 4028 5 3 397 611 5 4 1371 1284 5 5 3215 3632 5 6 3955 5751 5 7 1503 1547 5 8 4645 4537 5 9 1025 1065 5 10 381 382 5 11 3020 3037 5 12 1124 1054 7 1 1274 1054 7 3 1322 1413 7 4 1191 1383 7 5 1216 1363 7 5 1246 1364 7 7 1469 1534 7 1469 1534 7 5 1465 597
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -3 9 364 337 H = -8 K L FO F(-14 7 271 221 -12 1 254 461 361 -12 8 461 361 -12 8 461 361 -12 8 461 361 -12 8 461 361 -15 2 318 314 -7 4 264 157 H = -6 K L FO F(H = -6 K L FO F($\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 6 9114 8592 16 9 1441 1238 17 2 279 599 17 4 3393 3505 H = 1 K L FO FC 1 1 3495 2695 1 2 398 296 1 3 3101 3324 1 4 1285 1167 1 5 6536 6661 1 8 2835 2932 1 9 1573 1341 1 10 543 327 1 11 1856 1782 1 2295 2245 1 13 2474 2620 1 4 543 527 1 15 1253 1237	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 9 1243 1474 9 10 589 574 9 11 1636 1626 9 12 2071 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 954 11 3 1148 1281 11 4 471 489 11 5 3265 3326 11 6 970 973 11 8 309 413 11 9 681 609 11 10 1046 1437 11 11 1444 1446 11 12 334 410	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 464 -3 9 364 331 H = -8 K L FO F(-14 7 271 221 -12 1 254 164 -14 7 271 224 -12 8 461 364 -15 2 312 314 -7 4 264 157 H = -6 K L FO F(-15 2 312 314 -7 4 264 157 H = -6 K L FO F(-6 19 563 544	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 6 9114 8592 16 0 1441 1236 17 2 279 599 17 4 3393 3505 H # 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 6536 6667 1 7 629 881 1 8 2635 2932 1 9 1573 1341 1 10 543 527 1 11 1856 1702 1 12 2295 2245 1 13 12474 2620 1 14 547 541 1 15 1253 1237 3 1 1832 2259	9 5 5608 5812 9 6 247 312 9 7 359 513 9 8 2169 2134 9 10 589 577 9 11 1636 1626 9 12 2071 2033 9 13 2745 2797 11 1 1464 1312 11 2 1074 932 11 3 1148 1201 11 4 471 489 11 5 3265 3326 11 6 970 973 11 8 309 413 11 9 681 609 11 13 1044 1446 11 12 334 410 13 1 1953 1986	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -5 9 364 337 H = -8 K L FO F(-12 8 461 361 -12 8 461 361 -14 7 271 221 -17 4 264 151 H = -5 K L FO F(-15 2 310 311 -7 4 264 151 H = -5 K L FO F(-6 10 363 544 -2 9 371 322	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 6 9114 8592 16 9 1441 1238 17 2 279 599 17 4 3393 3505 H = 1 K L FO FC 1 1 3495 2695 1 2 398 296 1 3 3101 3324 1 4 1285 1167 1 5 5536 6667 1 7 629 881 1 8 2835 2932 1 9 1573 1341 1 10 543 527 1 11 1856 1782 1 12 2295 224 1 13 2674 2620 1 14 547 541 1 15 1553 1237 3 1 1832 2256 2 3599 3460	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 404 -3 9 364 331 H = -8 K L FO F(-14 7 271 221 -12 1 254 164 -14 7 271 224 -12 8 404 361 -6 9 225 100 M = -7 K L FO F(-15 2 310 314 -7 4 264 157 H = -6 K l FO F(-6 10 563 544 -2 9 371 321	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 6 9114 8592 16 9 1441 1236 17 2 279 599 14 4 3393 3505 H • 1 K L FO FC 1 1 3495 2695 1 2 308 296 1 3 3101 3324 1 4 1285 1167 1 5 6536 6667 1 7 629 881 1 8 2635 2932 1 9 1573 1341 1 10 543 527 1 11 1656 1702 1 12 2295 2245 1 13 22474 2620 1 14 547 541 1 15 1253 1237 3 2 3599 3402 2 8 570 267	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S 2 5127 4028 S 3 397 611 S 4 1371 1284 S 3 215 3632 S 6 3955 5051 S 7 1503 1547 S 44645 4537 S 9 1025 1005 S 10 381 382 S 11 3028 3057 S 12 1124 1054 S 13 1700 1052 7 1 2761 2801 7 2 1774 1650 7 3 1322 1413 7 4 1191 1303 7 5 541 384 7 7 1409 1534 7 8 366 567 7 9 690 752 7 10 1150 1196 7 11 2506 2527
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -5 9 364 337 -5 9 364 337 -7 7 221 -12 8 461 361 -12 8 461 361 -14 7 271 221 -17 4 264 131 -7 4 264 131 -7 4 264 151 -7 4 264 51 -7 5 -7 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 464 -3 9 364 331 H = -8 K L FO F(-14 7 271 221 -12 1 254 163 -14 7 271 225 -14 2 54 163 -15 2 312 314 -7 4 264 157 H = -6 K L FO F(-15 2 312 314 -7 4 264 157 H = -6 K L FO F(-6 9 27 132 -7 4 264 157 H = -5 H = -5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -5 9 364 337 -5 9 364 337 -7 271 224 -12 1 254 461 361 -12 8 461 361 -13 2 318 314 -7 4 264 131 -7 4 264 151 -7 4 264 51 -7 5 -5 4 50 51 -2 9 371 325 -4 5 5 54 -2 9 371 325 -4 5 5 54 -2 9 57 55 -5 54 -5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 1126 1457 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531 2 6 1619 1555 2 7 1465 1765 2 8 1072 10841 2 9 486 518 2 16 862 669 2 12 1963 1113 2 13 1465 1367 2 14 1177 1273 4 9 3855 3529 4 110766 9574 4 21772516652 4 317666168835 4 6986 8356 4 51154310935 4 61547615444 4 7 5693 3981 4 8 2921 2786 4 18 662 7669 4 11 8692 8333 4 12 8217 3052	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-7 3 337 307 -7 7 332 221 -5 2 304 381 -5 4 419 464 -3 9 364 337 -4 271 221 -12 1 254 164 -14 7 271 221 -12 1 254 164 -14 7 271 221 -6 9 225 104 -6 9 225 104 -7 4 264 157 -6 9 225 104 -7 4 264 157 -6 9 771 322 -7 4 264 157 -6 9 371 322 -7 4 264 157 -6 9 371 322 -7 4 264 157 -7 5 2 92 467 -7 5 2 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S 2 5127 4028 S 3 397 611 S 4 1371 1284 S 3 215 3632 S 6 3955 5051 S 7 1503 1547 S 4464 4537 S 9 1025 1005 S 10 301 302 S 11 3022 3057 S 12 1124 1054 S 13 1700 1652 7 1 2761 2081 7 3 1322 1413 7 4 1191 1383 7 4 1191 1383 7 5 1216 1553 7 6 541 384 7 7 1469 1534 7 8 386 597 7 9 690 752 7 12 1155 1169 7 13 725 556 7 14 1492 1083 9 1 1709 2411
-7 3 337 307 -7 7 332 221 -5 2 364 381 -5 4 419 464 -5 9 364 337 -7 271 224 -12 1 254 164 -12 1 254 164 -12 8 461 361 -6 2 663 377 -6 9 225 100 -15 2 310 311 -7 4 264 135 -7 4 264 135 -7 4 264 135 -7 4 264 15 -15 2 310 31 -15 2 310 51 -15 2 310 51 -15 2 5 K L FO Ff -15 2 5 K L FO Ff -13 2 292 466 -9 3 298 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 1126 1457 2 2 1521 1366 2 3 1491 1428 2 4 2454 2363 2 5 584 531 2 6 1619 1555 2 7 1465 1765 2 8 1072 1081 2 9 486 518 2 16 882 689 2 12 1963 1118 2 13 1465 1347 2 14 1177 1223 4 9 3855 3529 4 110766 9574 4 21772516652 4 31766616855 4 61547815464 4 8 2921 2786 4 8 2921 2786 4 11 8692 8333 4 12 8157 7659	13 6 1915 1065 10 7 321 427 10 9 305 254 10 10 325 311 10 11 325 311 10 12 1079 1095 12 1079 1095 12 12 1079 1095 12 12 1079 1095 12 12 1079 1095 12 12 1079 1095 12 12 1079 1095 12 12 1079 1095 12 12 1079 1095 131 12 4244 3043 12 12 7 5192 4033 12 7 5192 4033 12 10 6777 6405 12 10 6777 6405 14 2132 2032 14 14 2132 2032 14 14 2132	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $CsZr_6L_{14}$ (Crystal 2) $F_6F_c \ge 10$

		15 2 252 264	3 0 1337 1322		0 4 6100 6166	3 4 1337 1430
4 3 242 434	2 / 1663 1330	12 6 340 340	2 4 414 1802	K L FU FC	8 1 859 983	3 5 3105 3594
4 6 2045 2522	5 8 1564 1564	12 7 243 398	5 18 1066 1001	C 0 4899 4639	8 2 1055 1052	3 7 877 728
4 7 1915 2014	2 9 249 302	12 8 1004 1080	5 11 854 952	0 1 1926 1710	8 3 3494 3471	3 8 1391 1338
9 8 1893 1867	2 10 3139 3143	12 9 328 455	5 12 3198 3115	0 2 1503 1470	8 4 818 763	3 9 1280 1237
9 9 261 124	2 11 573 619	12 19 1515 1599	5 13 1673 1831	P 3 5648 5255	8 5 918 802	3 11 2485 2441
9 11 258A 2594	2 12 924 1916	12 11 453 555	5 14 697 692	@ 4 264 479	8 7 1564 1420	3 12 1803 1801
11 1 373 343	2 13 656 718	14 0 1997 2125	7 1 375 857	8 5 1330 1380	A A 2044 2498	3 13 1336 1348
11 2 843 807	2 14 819 882	14 1 1749 1684	7 3 2024 2427	0 6 636 861	A 0 1262 1200	5 1 3813 5131
11 4 478 436	A A A619 4119	14 3 1443 1580	7 3 746 444	8 7 3168 3104	8 11 16ad 1800	
11 6 1626 1420	A 1 1608 1674	14 E 1445 1557	7 3 700 040	0 1 2130 2178	8 13 444 1377	5 3 1450 1403
11 B 101 405	4 3 1744 1484	14 3 1034 1370	7 8 747 484	0 0 1633 1580	0 12 020 723	3 4 1063 1000
		14 FAIS SHA	7 3 747 801	0 4 1032 1304	10 0 2331 2343	2 2 2410 2336
	4 3 3004 3377	14 6 443 731	/ 0 1004 1000	6 10 1240 1323	10 1 2402 2341	2 8 811 844
11 16 1373 1336	4 4 323 334	10 1 4/34 4/11	/ / 004 000	0 11 2023 2430	16 2 1034 1841	2 / 222 243
11 11 1671 1670	4 3 1044 1002	10 5 4150 0244	/ 8 16/9 1141	0 12 020 924	16 2 5242 5293	5 8 1641 1664
11 12 1004 1013	4 5 470 1004	10 3 3873 3640	/ 9 515 583	9 13 1674 1701	10 4 509 501	5 9 2070 1928
13 1 2104 2122	4 1 5154 5333	16 4 1715 1517	7 10 1789 1759	0 14 1643 1572	18 5 233 193	5 11 2809 2768
13 2 2492 2375	4 8 1288 1360	16 5 3966 3889	7 12 405 513	2 0 1377 1359	10 6 343 476	5 12 1339 1376
13 3 647 738	4 9 1048 1153	16 6 8738 8524	9 1 2361 2583	2 1 2317 2194	10 7 2950 2982	5 13 2621 2597
13 4 360 422	4 10 2028 2105	16 7 3985 3861	9 2 4946 4960	2 2 1877 1856	19 8 1851 1883	7 1 407 472
13 5 1700 1587	4 11 2533 2491	18 0 2050 2063	9 4 1781 1710	2 3 1816 1703	10 9 446 512	7 3 1706 1615
13 6 1977 1923	4 12 897 965	18 1 991 923	9 5 1425 1308	2 4 1107 1269	10 12 1630 1740	7 5 3688 3677
13 7 1231 1264	6 4 3374 3058	18 2 1654 1783	9 6 852 715	2 5 657 670	10 11 1006 1078	7 h 1134 1107
13 8 2885 2902	6 1 1952 1810		9 8 3054 3014	2 6 1556 1546	12 01483413897	7 7 1118 1117
13 9 456 689	6 2 2460 2377	H # 5	9 9 1775 1823	2 7 2508 2509	12 1 2133 1999	7
15 1 1753 1724	6 3 1560 1866	K L FO FC	9 10 3486 3450	2 8 1443 1442	12 2 424 446	7 9 937 1946
15 2 2816 2724	6 7 1999 1940	1 1 2537 2749	9 11 1046 1014	2 10 907 480	13 1 1546 1163	7 10 1364 1304
15 4 1243 1264	6 A 948 962	1 2 6316 5805	9 13 1979 1973	2 11 240 100	12 113106 3336	7 14 394 383
15 5 1577 1544	6 10 2638 2684	1 1 DAR EEA	11 1 3170 3363	3 13 046 005	15 41614311000	/ 11 //6 /30
16 6 011 066	A 11 1745 1300	1 4 3840 330	11 3 2570 3647	E 12 403 440	12 0 1004 1140	4 1 3035 3010
15 0 751 750	6 13 1303 1899	1 4 6314 6066	11 2 23/9 2303	E 13 100/ 1044	12 / 165/ 930	A 5 1021 A30
	0 12 223 00/	1 3 1444 1444	11 3 051 077	2 14 247 442	15 916922 4449	9 5 493 631
13 6 1365 1376	0 14 333 711	1 0 941 1000	11 4 550 435	4 02403425667	12 9 2770 2643	4 d 603 634
17 1 1401 1422	0 1 0011 3342	1 7 318 319	11 6 1416 1350	4 1 4576 4321	14 0 1049 671	9 5 954 1040
17 3 1220 1214	0 21565014461	1 8 3442 3297	11 7 527 662	4 2 255 178	14 2 935 1081	9 6 2033 2011
1/ 6 5/6 607	8 3 9956 9847	1 9 1868 1947	11 A 3240 3165	4 3 3435 3168	14 3 603 706	9 7 1293 1276
	8 4 3222 3148	1 10 3376 3242	11 9 1465 1502	4 41659814677	14 4 2946 2498	9 8 1182 1155
H B 4	8 5 7544 7263	1 11 672 701	11 10 379 454	4 5 3158 2833	14 5 840 686	9 9 3175 3155
K L FO FC	8 61496814430	1 12 2265 2146	11 11 1109 1229	4 6 2681 2685	14 6 2321 2434	9 10 1161 1283
E A 33A 99	r 7 3647 3669	1 14 2707 2732	13 1 1417 1414	4 7 3069 2942	16 3 1124 1070	11 1 736 657
8 1 7373 6947	8 8 946 876	3 1 2446 2678	13 3 1408 1420	4 81579715285	16 4 1646 1583	11 2 976 936
Ø 22177120463	8 9 6111 5592	3 2 358 275	13 4 983 923	4. 9 3667 3339	16 6 841 949	11 3 1277 1225
0 31460813871	8 10 8706 8226	3 3 1995 2211	13 5 1597 1635	4 10 1180 1154		11 4 1261 1267
8 4 4328 3996	8 11 5422 5112	3 4 897 875	13 6 705 753	4 11 838 767	H = 7	11 5 267 352
8 510126 9541	8 13 2944 2893	3 5 1623 1662	13 7 371 536	4 12 9298 9083	K L FO FC	11 b 453 57A
P 61817418537	10 0 3283 3063	3 7 993 1115	13 8 1412 1429	4 13 1687 1684	1 1 3370 3515	11 7 786 748
P 7 3338 16P3	10 1 1824 1848	3 8 2409 2449	13 9 1026 1261	4 14 1822 1465	1 2 1264 1359	11 A 335 473
0 8 1299 1132	19 2 2598 2546	3 9 1418 1444	13 13 360 581	A 11122 1884	1 3 471 441	13 1 1782 1487
Ø 9 7223 69A7	10 3 1230 3111	3 10 340 431	15 1 718 704	6 1 743 AAA	1 4 717 1000	43 3 003 476
8 1010283 9880	10 8 835 770	3 11 1940 1316	15 3 370 444	6 3 1702 000	L = (1) 1007	
A 11 7416 7049	10 6 ASU 708	- 11 1COT 1313	15 E JIU 410		1 2 1/00 1003	
# 12 A98 574	10 7 3501 3544	- 10 1701 17/3 1 1 1334 1100	15 5 404 344		1 7 1670 1540	13 7 3470 3413
a 11 1455 3734	10 × 1108 1040	3 13 1000 1190	12 0 1340 1342	0 4 3317 3765	1 7 1330 1384	13 0 337 416
0 10 2000 C/C1		3 14 833 886	15 / 1004 1001	8 3 1133 1139	1 0 1421 1432	15 7 580 334
B 44 0161 1171	14 4 202 244	3 1 1767 1955	17 1 1127 1127	B 6 2840 2892	1 4 3513 3460	15 6 885 988
E N 3400 3011	10 10 2000 2850	7 2 1834 1742	17 2 1747 1771	6 7 532 582	1 10 1310 1352	13 9 496 634
C 1 033 54H	10 11 1001 1763	5 3 2474 26Ab	17 3 236 257	6 8 255 438	1 12 435 506	15 1 1210 1224
e 2 3133 3018	19 15 935 1013	5 4 1767 1885	17 4 329 525	6 10 347 351	1 13 597 731	15 3 1455 1585
2 3 1912 1759	12 V 2946 2947	5 5 2731 3707		6 11 925 926	1 14 1104 1117	15 5 3487 3584
2 4 494 376	15 5 1162 1114	5 6 1871 1946		6 12 1464 1576	3 1 2968 3231	17 1 657 524
2 5 412 439	12 3 332 331	5 7 921 1039		6 13 878 941	3 2 265 390	

*551 1651 # 5 914 559 111 611 5 1991 1451 0 9 P 1 451 919 2 210 401 915 119 5 - 61 655 1853 2#11 1511 # 4 118 811 6 945 045 4 9613 9521 5 S . 17 \$ 925 192 E1+1 8+E1 3 1537 1551 5 8 1847 2015 555 4 15 919 139 . . 1 1306 1541 1 454 419 01 8181 9991 L 5 1196 1198 1151 0191 1 v # P11 P39 9 11 5265 5202 850 £10 01 L 8 2269 2214 41 8895 4455 5 1 631 695 0111 2911 9 1196 5156 01 9 1 161 1261 6 . . 9595 EESS 11 . 5 5891 5125 16 5101 5129 9 928 999 1 1505 1191 6 SES6 2691 SONT METT S ... 4 8 5122 5100 4 8 761 166 2 5644 2419 S 6 503P 500P 16PD 5999 81 8 5 242 922 8 5265 5209 696 996 P . *** 868 9 4505 8515 6 483 456 1 6 2413 2489 2 3902 3933 5 7 1923 1749 1 . 516 866 - 5 9165 9110 8 34 0 1 7 . 8 ٤ 05511506119 5 1552 1122 1 9239 9344 ST . H 2 915 921 0 2435 2430 9161 209 9 S 2 4454 4554 LSST ETHE T 9212 PNS2 2 10 1015 1993 EW#1 6051 # 926 056 11 5 BBIL BUSL S 265 165 5 AT 3 802 805 s 610 005 6 5 2 1545 1120 116£ 5£20 £ 119 294 01 5 4 9995 9323 610 £95 168 650 2 01 2 5 1021 1303 51400212081 6 1991 1256 2 4584 9926 2 9 1 594# 5931 884 7 c 499 819 L s 11 5153 5598 1 3463 3555 1 5362 2473 5 1943 7352 454 919 5 6 S126 5598 9 156 999 S 545 919 91 & S21 552 4121 9951 9 1587 9488 1 5 1392 1412 2 932 942 3 391 412 6 5242 5241 8 1949 1999 5 10 5122 5541 2 1600 6910 5 0 6598 6124 1 330 481 1 142 931 ē 1 1225 1226 8 942 1058 5 2 392T 392 E • 15 1455 1509 • 18 1621 1955 #161 #661 Ø 5 5161 5530 s £191 E181 9 1 5110 5722 645 649 1 5 1 1311 1484 9801 2201 5 869 669 I ē 9161 1261 5 2 1 224 2480 4 1155 1501 111 201 4 5 0 1210 1401 3 144P 1400 1 11 1151 1551 ē 1611 2511 5 925 010 01 0 5 5315 5344 2 2 16 652 660 8 4812 4895 1 1 2120 2002 K F EO EC H = 11 1 1201 1288 S 1765 1708 ā 595 115 1 4 SISS SIGN 1 2473 2428 9 9419 9252 1 5047 5084 8 1 5451 5458 - 2 1211 1591 9 9 3198 3931 0 356 484 9 655 611 1690 0015 1 0 N 5343 5301 P 828 845 5 13 494 784 411 691 9 9 1 9419 4225 9602 5052 II t 5 5839 S811 951 109 II 8 6 STTL 2685 8111 9191 1 6 10 5222 5428 14 4 1569 1289 121 671 9 6 IU 1262 1516 ABEN 11550 5 456 2501 9 LIGAIAIAIIN a 14 2 1134 1852 14 3 1944 1976 8 5228 5221 8 1889 5659 21 3 5466 3038 \$911 £061 9 EES 910 5 4 6541 6536 0 2 5199 5287

 3221
 0113
 0113

 311
 2
 0113
 0113

 312
 0113
 0113
 0113

 312
 0113
 0113
 0113

 312
 0113
 0113
 0113

 313
 0113
 0113
 0113

 314
 0113
 0113
 0113

 315
 0113
 0113
 0113

 314
 160
 013
 0113

 314
 160
 013
 0113

 314
 160
 013
 013

 314
 160
 013
 013

 314
 160
 013
 013

 314
 160
 013
 013

 314
 160
 013
 013

 314
 160
 013
 013

 314
 160
 013
 013

 314
 160
 013
 013

 314
 160
 013
 013

 314
 011
 014
 013

 314
 011
 013
 013

 314
 < 5 1592 1562 415 841 T 3 4128 3787 125 055 0 1 5010 1010 8 5890 1960 9 E85 909 1 5 5953 5219 986 HI6 E 12501000110 0 564 626 9 12 5501 5580 4 3712 3612 1 1 1021 1452 × 7 60 60 1 6650 6434 к Г ±0 ѣС н = 15 2 5068 1892 996 168 11 2 526 526 9205 9125 0 169 LEV P EDEE 1988 A 5 1229 1559 9611 9511 T 1921 1911 9 £1 = H 2 4401 1286 5 4401 1286 0 ESL LOL L 6 4035 9560 13 2 299 13 5 19 5 51 13 5 1250 1210 13 5 1250 1295 11 4 1212 1295 1191 2951 0 1 295 254 9971 8971 8 IPL ELL EL 400 555 0 9 953 644 982 599 8 15 I 622 935 a 1575 7265 2 15 666 628 3 5835 1493 2 455 208 15 2 1425 1482 9557 7657 8 0 920 592 0 8 5068 5184 5 160 612 4 5018 5011 0 5211 522* 51 2951 5451 4 L FO FC
 TEC
 TEC
 TEC
 TEC
 TEC

 109
 DAS
 0
 TEC
 TEC

 109
 DAS
 0
 TEC
 TEC
 TEC

 109
 DAS
 0
 TEC
 <t × 969 9401 2 1 863 R36 884 559 1 11 01 = H
 11
 11
 11

 11
 2
 5
 11

 221
 5
 5
 11

 221
 5
 10
 1

 1551
 940
 1
 1

 1551
 940
 1
 1

 659
 960
 1
 1

 640
 164
 1
 6

 641
 164
 6

 1641
 1
 6

 941
 2
 2

 492
 2
 2

 692
 1
 1

 692
 1
 1

 692
 1
 1

 692
 1
 1

 7472
 2
 2

 7472
 2
 1

 7472
 2
 1

 7473
 1
 1
2 2746 3845 9 1301 1364 5651 4851 0 411 110 W 1 110 1002 8 5114 5868 9191 1051 B 1002 6602 1 51 13 4 1000 1000 13 9 100 100 2 142 848 C L LO LC 2 220 282 1 1510 1115 1 1301 1421 6 = H 9 2165 3549 1 358 971 111 119 5 511 692 0 12 2 5110 5546 13 7 291 491 13 2 5512 5563 3 2462 2350 SIE1 8691 0 9801 8681 S 8691 4091 # 9 1030 1047 2 3202 2517 6 052 052 7 3202 3413 2 3502 3413 1 4011 4314 1 4011 4314 5 2960 4994 91 59PE 9655 ET . * 3522 3193 5 1255 1203 9 1201 1400 1 1600 1014 1 4876 4785 1299 2699 21 8 91 8 6122 9248 596 926 1 5 356 210 12 9 2464 2549 EAD9 9099 11 8 91 SIA 119 1-N R 2000 5011 P 5198 5249 2 1465 1437 11 10 4125 4433 8 1334 1519 H F 60 60 H # 19 A C EO AC SBIE USIE E 8 1530 1505 11 9865 6845 8 #I 1509 2989 6 5 640 698 0951 9951 L 11 N 1999 1994 1100 0920 9 6 1219 1252 A 569 076 0 5011 9001 5 1 242 923 9 5448 5234 L 11 15 4891 1611 L # 52N 4. • 8 925 941 7 1179 1202 5001 498 11 9 11 #818 STT8 8 2 21 20 452 + 5011 5021 2 5001 1605 1 9 100 1135 9 100 1135 9 100 1135 2 105 115 2 105 0 9525 9669 9 665 1255 1 5315 5364 4591 9491 8 4 H 1521 9501 01 9 11 5 1849 1898 11 1 1946 1958 15 @ 1625 1966 8598 1916 5

 1
 9
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
2 529 203 v 1vo ens 8 446 746 1 246 269 4 2 591 254 21 4 6245 6286 L 492 919 81 6 15 5 1419 1445 31106811249 157 762 8 2 1064 1082 1111 1591 9 155 317 6 15 0 1201 1225 L 29491 8496 2 6 695 845 9 L 2 110# 1096 9 8 3146 3145 6 10 10 1002 1512 110598 8402 10 8 5104 5850 2051 1591 £ 9 4EP 64E 11 5 1 1569 1295 1 862 927 8995 5159 9 6 1 1691 492 e 5 5112 5198 e 1 1932 1980 2 10 5040 5122 3 662 632 4991 1991 9 499 529 1 01 \$44 565 9 01 0.1 9 8 4 6 34 2 5300 5510

CEZT614 (Crystal 2) For x 10